\qquad Pd. \qquad
Ratio, Root, or Alternating
Infinite Series Day 6

1. What can you say about the series $\sum a_{n}$ in each of the following cases?
A.) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=8$
B.) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0.8$
C.) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$

Determine whether the series is convergent or divergent.
2. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2}}$
3. $\sum_{n=1}^{\infty} \frac{n}{5^{n}}$
4. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+4}$
5. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5 n+1}$
6. $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{(2 n+1)!}$
7. $\sum_{k=1}^{\infty} k\left(\frac{2}{3}\right)^{k}$

BC Calculus
Name \qquad Pd. \qquad
Ratio, Root, or Alternating
8. $\sum_{n=1}^{\infty} \frac{n!}{100^{n}}$

Infinite Series Day 6
9. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(1.1)^{n}}{n^{4}}$
10. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{\sqrt{n^{3}+2}}$
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{\frac{1}{n}}}{n^{3}}$
12. $\sum_{n=1}^{\infty} \frac{\sin 4 n}{4^{n}}$
13. $\sum_{n=1}^{\infty} \frac{10^{n}}{(n+1) 4^{2 n+1}}$
14. $\sum_{n=1}^{\infty} \frac{n^{10}}{(-10)^{n+1}}$
15. $\sum_{n=1}^{\infty} \frac{e^{2 n}}{n^{n}}$

BC Calculus
Ratio, Root, or Alternating

Review

R1. Given the equation $y=3 \sin ^{2}\left(\frac{x}{2}\right)$, what is an equation of the tangent line to the graph at $x=\pi$?
a. $y=3$
b. $y=\pi$
c. $y=\pi+3$
d. $y=x-\pi+3$
e. $y=3(x-\pi)+3$

Name \qquad Pd. \qquad
Infinite Series Day 6

R2. The position function of a moving particle on the x-axis is given as $s(t)=t^{3}+t^{2}-8 t$ for $0 \leq t \leq 10$. For what values of t is the particle moving right?
a. $t<-2$
b. $t>0$
c. $t<\frac{4}{3}$
d. $0<t<\frac{4}{3}$
e. $t>\frac{4}{3}$

R4. If $f(x)=\int_{1}^{x} t\left(t^{3}+1\right)^{\frac{3}{2}} d t$, then $f^{\prime}(2)$ is semicircles, for $-1 \leq x \leq 3$ as shown in the figure below. What is the value of $\int_{-1}^{3} f(x) d x$?
a. 0
b. π
c. 2π
d. 4π
e. 8π

a. $2^{\frac{3}{2}}$
b. $54-2^{\frac{3}{2}}$
c. 54
d. $135-\frac{13 \sqrt{2}}{2}$
e. 135

Answers:

1.) A. diverges by ratio B. converges by ratio C. inclusive
2.) Divergent by ratio
3.) Absolutely convergent by ratio
4.) Converges by alternating
5.) Converges by alternating
6.) Absolutely convergent by ratio
7.) Absolutely convergent by ratio
8.) Diverges by ratio
9.) Diverges by ratio
10.) Converges by alternating
11.)Converges by alternating
12.) Converges by Comparison
13.) Converges Absolutely by Ratio
14.) Converges Absolutely by Ratio
15.) Converges Absolutely by Root

R1.) A R2.) E R3.) A R4.) C

