| 1. Area of Polar $\frac{1}{2}\int_{a}^{\beta} R^{2} d\theta$ | 2. Area Between 2
Curves Polar $\frac{1}{2} \int_{a}^{b} (R_{2})^{2} - (R_{1})^{2} d\theta$ | | Polar 4. $\frac{dy}{dx} = \frac{dR}{d\Theta} \sin \Theta + R \cos \Theta$ $\frac{dR}{d\Theta} \cos \Theta - R \sin \Theta$ | |--|--|---|--| | 5. $\sin 2\theta =$ $2\sin \theta \cos \theta$ | Parametric 6. Arc Length over [a, b] $\int_{a}^{b} \sqrt{1 + f'(x)^2} dx$ | make sure you have all three 7. $\cos 2\theta = \cos^2 x - \sin^2 x$ $\cos^2 x - 1$ $1 - \sin^2 x$ | 8. How do you find vertical tangent lines? bottom of ax = 0 and solve | | Parametric 9. $\frac{d^2y}{dx^2} = \frac{x'(t)y''(t)-y'(t)x''(t)}{[x'(t)]^3}$ | Parametric 10. Arc Length over [a, b] Sa [[x'(t)] + [y'(t)] ² | 11. How do you convert from polar to rectangular points? X=RCOSO y=RSINO | Rectangular → Parametric 12. a.) Line through point (a,b) with slope m Clt)=(a+t, b+mt) b.) Circle center(a,b) C(O)=(a+R coso, b+RSINO) | **No calculators** may be used on this portion of the test. Suppose the curve defined by the parameterization $c(t) = (3t + 3, t^4 - 8t^2)$. Answer the following. 1. Find the slope of the curve for $$t = 1$$. $$\frac{dy}{dx} = \frac{4t^3 - 10t^2}{3} = \frac{4(1)^3 - 16(1)^2}{3} = \frac{4 - 16}{3} = \frac{-12}{3} = -4$$ If possible, find the points, in Cartesian form, corresponding to each horizontal and vertical tangent. Tangent line to R = 1 $C(1) = (3(1) + 3, (1)^4 - 8(1)^2)$ $$C(1) = (3(1) + 3, (1)^{4} - 8(1)^{2})$$ $$= (6, -7)$$ $$y - -7 = -4(x-6)$$ $y + 7 = -4(x-6)$ Review: Polar/Parametric/Vector Answer the following. Find an equation for the line tangent to the curve $r = 3 + 2\cos\theta$ at $\theta = \frac{\pi}{2}$. Write your answer in Cartesian form. $$\frac{-2\sin\theta\sin\theta + (3+2\cos\theta)\cos\theta}{-2\sin\theta\cos\theta - (3+2\cos\theta)\sin\theta} = \frac{-2(1)(1) + (3+2(0))(0)}{-2(1)(0) - (3+2(0))(1)} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\sin\theta}{-2(1)(0) - (3+2(0))(1)} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\sin\theta}{-2(1)(0) - (3+2(0))(1)} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\sin\theta}{-2(1)(0) - (3+2(0))(1)} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\cos\theta}{-2(1)(0) (3+2\cos\theta)\sin\theta} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\cos\theta}{-2(1)(0) - (3+2\cos\theta)\sin\theta} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\cos\theta}{-2(1)(0) - (3+2\cos\theta)\cos\theta} = \frac{2}{3}$$ $$\frac{-2\sin\theta\cos\theta - (3+2\cos\theta)\cos\theta}{-2(1)(0) - (3+2\cos\theta)\cos\theta} = \frac{2}{3}$$ $$\frac{-2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta}$$ $$\frac{-2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta}$$ $$\frac{-2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta} = \frac{2\cos\theta}{-2\cos\theta}$$ $$\frac{-2\cos\theta}{-2\cos\theta} \frac{$$ $$y-3=\frac{2}{3}(x-0)$$ $$y = (3+2\cos\theta)\sin\theta$$ $y = (3+2(6))(1)$ $y = 3$ Suppose the graph of $$r(\theta) = \theta \cos \theta$$ for $0 \le \theta \le \pi$ given at the right. Answer the following $\frac{dR}{d\theta} = \theta \cdot (-\sin \theta) + \cos \theta \cdot (1)$ Calculate $\frac{dr}{d\theta}$. Then, evaluate your result for $\theta = \pi$. 6. $$\frac{dR}{d\theta} = \cos\theta - \theta\sin\theta$$ $$= \cos\pi - \pi\sin\theta$$ $$= -1 - \pi(0)$$ $$= -1$$ Interpret your result for $\frac{dr}{d\theta}\Big|_{\theta=\pi}$ from #6 with respect to the curve. Explain your reasoning. Review: Polar/Parametric/Vector Name -3,59806 Calculators may be used on this portion of the test. Suppose a particle's velocity along a path is described by the vector $\vec{v}(t) = \langle 2t - 2, t^2 - t^4 \rangle$. Answer the following. Show all steps in your work. Calculate the speed of the particle at t = 0.1. 8. Speed= $$[v(x)]^2 + [v(y)]^2 = J(2t-2)^2 + (t^2-t^4)^2 = 1.80003$$ Set up and evaluate an expression to find the total distance traveled by the particle on the 9. interval $0 \le t \le 1$. $$\int_{0}^{\infty} \sqrt{(2t-2)^{2}+(t^{2}-t^{4})^{2}} = \frac{428}{315} \approx 1.0231$$ Is the particle speeding up or slowing down at time t = 0.1? Justify your answer. $$V(1) = \langle -1.8, .0099 \rangle$$ dot product = $(-1.8)(2) + (.0099)(.196)$ $a(t) = (2, 2t - 4t^3) = (2, .196)$ Slowing down Slowing down Suppose a particle's position along a path is described by the vector $\vec{r}(t) = \langle 1 - \sin t, \cos t \rangle$ for $0 \le t < 2\pi$. Answer the following. Show all steps in your work. 11. Find $$\vec{v}(t)$$ and $\vec{a}(t)$. $\vec{v}(t) = \langle -\cos t, -\sin t \rangle$ $$\vec{a}(t) = \langle -\cos t, -\sin t \rangle$$ Is there a time for $0 \le t < 2\pi$ when the particle is not moving? If so, when? If not, 12. explain your reasoning. toget top half \bigcirc 13. Find the area enclosed by the inner loop of the curve defined by $r = 1 + \sqrt{2} \cos \theta$. bottom half of loop 14. Find the area of the region that lies inside both of the curves defined by $r = 4\sin\theta$ and $r = 1 + \sin\theta$. ,102269 IT $$0=\sin^{-1}(\frac{1}{3})$$. $102269 + 3.8892 + .10226$