Calculus	,
Area of Polar Functions	.*

300s0	0
7	0
4	π/2
1	TT
4	311/2
7	211

Name	
Date	Pd

For each sketch the area of the region and then find the area.

r= 4+

1. Find the area of the region bounded by $r = 4 + 3\cos\theta$ on the interval $(0,2\pi)$.

2. Find the area of the region bounded by on the interval $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.

3. Find the area of the region bounded by $r = 4 + 3\cos\theta$ on the interval $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$.

4. Find the area of the region bounded by $r = 4 + 3\cos\theta$ on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

5. Find the area of one petal of

6. Find the area of one petal of

Calculus

Area of Polar Functions

Name_____Pd.

1. The graphs of the polar curves $\underline{r}=3$ and $\underline{r}=3+2\sin(2\theta)$ are shown in the figure to the right for $0 \le \theta \le \pi$. Let

R be the shaded region that is inside the graph of r=3 and inside the graph of $r=3+2\sin(2\theta)$. Find the area of R.

$$3 = 3 + 2\sin(20)$$
 $0 = 2\sin(20)$ Intersect
 $\sin(20) = 0$
 $9 = \frac{\pi}{2}$
 $\frac{1}{2}S_{\pi/2}(3 + 2\sin(20))^2 + \frac{1}{4}T(3)^2$
 $\frac{1}{2}[5.279] + 9\frac{\pi}{4}$
 $2.639 + 7.068 = 9.707$

inside the graph of r=3 and also inside the graph of $r=3+2\cos(\theta)$, as shaded in the figure. Find the area of R.

$$\frac{1}{2}\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (3+2\cos\theta)^{2} + \frac{1}{2}\pi(3)^{2}$$

$$\frac{1}{2}[10.558] + \frac{9\pi}{2}$$

$$5.279 + 14.137$$

$$19.416$$

3. The graphs of polar curves r=2 and $r=3+2\cos(\theta)$ are shown in the figure to the right Let R be the regio

that is inside the graph of r=2 and also inside the graph of $r=3+2\cos(\theta)$, as shaded in the figure. Find the area of R. $2=3+2\cos\theta$

4. The graphs of polar curves r=2 and $r=2-\frac{3}{2}\sin(\theta)$ are shown in the figure to the right.

Let R be the region that is inside the graph of r=2 and also inside the graph of $r=3-\frac{3}{2}\sin(\theta)$, as shaded in the figure. Find the area

of R.
$$2=2-\frac{2}{2}\sin\theta$$

 $0=-\frac{2}{2}\sin\theta$
 $\sin\theta=0$ $\theta=0, \pi$
 $\frac{1}{2}\int_{0}^{\pi}(2-\frac{2}{2}\sin\theta)^{2}d\theta + \frac{1}{2}\pi(2)^{2}$
 $\frac{1}{2}\left[4.101\right] + 2\pi$