AP Calculus-AB
Notes: Special Trigonometric Limits \& Intermediate Value Theorem (IVT)
Day 8
Two Special Trig. Limits:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=\quad=\lim _{x \rightarrow 0} \frac{x}{\sin x} \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\quad=\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$

Example(s) 1:
A.) $\lim _{x \rightarrow 0} \frac{2 \sin x}{x}$
B.) $\lim _{x \rightarrow 0} \frac{\sin x}{2 x}$
C.) $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$
D.) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
E.) $\lim _{y \rightarrow 0} y \csc y$
F.) $\lim _{\alpha \rightarrow \frac{\pi}{2}} \frac{\sin \alpha}{9 \alpha}$

Example(s) 2:
A.) $\lim _{x \rightarrow 0} \frac{5(1-\cos x)}{x}$
B.) $\lim _{x \rightarrow 0} \frac{1-\cos x}{5 x}$
C.) $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{7 x}$

Intermediate Value Theorem (IVT):
Suppose that f is continuous on the closed interval $[a, b]$ and that M is between $f(a)$ and $f(b)$. Then, there exists some value c on the open interval (a, b) such that $f(c)=M$.

Example(s) 3:

Show that the function $g(x)=e^{-4 x}$ takes on the value 1 for some value of x on the interval $(-1,2)$.

Example(s) 4:
Show that the function $y=3 x^{3}-4 x-8$ has a root on the interval $(0,2)$.

Example(s) 5:
Suppose the function f, as given in the table below, is continuous for all real numbers.

x	0	2	4	6	8	10
$f(x)$	-8	2	5	-1	-10	-2

What is the minimum amount of times that $f(x)=-3.5$?

Example(s) 6:
Suppose the function h, as given in the table below, is continuous for all real numbers.

x	0	2	4	6	8	10
$h(x)$	-8	0	1	1	3	-1

Suppose $f(x)=4-2 h(x)$. Show that there must be a value n on $4<n<10$ such that $f(n)=5$.

