Limits, Continuity, \& R.O.C Day 5
Notes: Continuity
Continuity: For a function to be continuous at a point 3 conditions must be met at $x=a$.
1.
2.
3.

	Yes	No
1.		
2.		
3.		

Example(s) 1:
State all the places the following function is discontinuous and tell why it is discontinuous.

Where	Why
Discontinuous	

Example(s) 2:
Determine if each are continuous everywhere. If yes use the 3 step method to prove. If no state where discontinuous and why.
A.) $f(x)=\left\{\begin{array}{lll}x^{2}, & \text { for } & x>2 \\ 2 x, & \text { for } & x \leq 2\end{array}\right.$
B.) $f(x)= \begin{cases}2 x+3, & \text { for } x \geq 0 \\ -2 x-1, & \text { for } x<0\end{cases}$
C.) $f(x)= \begin{cases}x^{2}+3, & \text { for } x>-1 \\ 2 x+6, & \text { for } x<-1 \\ 2, & \text { for } x=-1\end{cases}$

Continuous Functions

Non-continuous Functions

Example(s) 3:
Determine if each are continuous everywhere. If yes use the 3 step method to prove. If no state where discontinuous and what kind of discontinuity.
A.) $f(x)=\frac{3}{x+2}$
B.) $f(x)=\frac{(x+3)(x+5)}{(x+2)(x+3)}$
C.) $f(x)= \begin{cases}x^{3}, & \text { for } x \geq 2 \\ 2 x+3, & \text { for } x<2\end{cases}$

