Remember:

How do you find the inverse of a function?

Easy as $1 \rightarrow 2 \rightarrow 3$ 1. 2. 3. Example 1: Find the inverse of f(x)

Example 1: Find the inverse of $f(x) = \frac{3x}{x+4}$

Thm. <u>Derivative of Inverse Functions:</u> Let f(x) be some function Let $f^{-1}(x)$ be the inverse Then $\frac{d}{dx} [f^{-1}(x)] = \frac{1}{f'[f^{-1}(x)]}$

Example 2: Find the Derivative of the Inverse given $f(x) = x^2 + 4$

A. Find the inverse and then take derivative

B. Use the Thm. to find the derivative of the inverse.

Example 3: Calculate the derivative of the inverse **<u>without</u>** finding the inverse function.

Find
$$\frac{d}{dx} \left[f^{-1}(\mathbf{x}) \right]_{\mathbf{x}=1}$$
 if $f(\mathbf{x}) = \mathbf{x} + e^{\mathbf{x}}$

Example 4:

- A. Find $(f^{-1})'(3)$ if $f(x) = 2x^3 3x + 3$
- B. Find $(f^{-1})'(2)$ if $f(x) = 2x^3 3x + 3$

Example 5: Find
$$\frac{d}{dx} [f^{-1}(x)]_{x=-1}$$
 if $f(x) = x^3 - 9$

Notes: Derivatives Of Inverse Functions Example 10: $f(x) = (\cos^{-1}(x^2))^3$ Find $f'(x)$	Derivatives (2) Day $f(x) = 2x \cos^{-1}(5x^2)$ Find $f'(x)$	4
Example 12: $f(x) = \sqrt{1-x^2} \operatorname{arcsin} x \operatorname{Find} f'(x)$	Example 13: $\frac{d}{dx} \left[\tan^{-1} \left(\frac{1+x}{1-x} \right) \right]$	