Implicit Differentiation: Used when taking a derivative and variables do NOT match.
Not Implicit: Variables Match
Implicit: Variables do No $\dagger$
Match
$\frac{d}{d x}\left[3 x^{2}\right]=$

$$
\frac{d}{d x}\left[3 y^{2}\right]=
$$

$\frac{d}{d y}[\cos (2 y)]=$
$\frac{d}{d y}[\cos (2 x)]=$
$\frac{d}{d q}\left[e^{q}\right]=$
$\frac{d}{d t}\left[e^{x}\right]=$ $\qquad$

\section*{| Implicit |
| :---: |
| Differentiation |}

Example 1: Find $\frac{d y}{d x}$ at $\left(\frac{3}{5}, \frac{4}{5}\right)$ for $x^{2}+y^{2}=1$. Find the equation of the tancent line and the eauation of the normal line.


Example 2: Find the derivative with respect to x . Find $\frac{d}{d x}$ $y^{4}+x y=x^{3}-x+2$

Example 3: Find $\frac{d y}{d t}$, where $\cos (t y)=\frac{t^{2}}{y}$

Example 4: A. Find the slope of the tangent line on the curve $e^{x y}=$ $x+y$ at $(-1,1.28)$. B. Find the equation of the tangent line on the same curve at the same point.

Example 5: Find $\frac{d^{2} y}{d x^{2}}$ for $x^{2}+y^{2}=1$

