Product Rule: If $y=f(x) \cdot g(x)$
\square Then $y^{\prime}=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)$
Or
Mrs. Mac's $\quad y^{\prime}=($ first $) \cdot \frac{d}{d x}($ second $)+($ second $) \cdot \frac{d}{d x}($ first $)$

Version

Product

 RuleSometimes you can do Algebra so you don't have to use product rule. Most times if you have a choice, the Algebra is the best way to go.

Example(s) Two: $f(x)=\left(3 x^{2}+4\right)(2 x-6)$
A. Do some Algebra so you don't
B. Use Product Rule
have to use product rule

Example(s) Three: $f(x)=3 x e^{x}$
You have no choice in this problem. You must use product rule.

Quotient Rule: If $y=\frac{f(x)}{g(x)}$

Then $\quad y^{\prime}=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g \prime(x)}{[g(x)]^{2}}$
Or
Mrs. Mac's $y^{\prime}=\frac{\operatorname{lodhi-hid~lo}}{l o^{2}}$
Version

Example(s) Four: $f(x)=\frac{5 x^{3}-4 x^{2}+3 x-2}{x}$
A. Do some Algebra so you don't
B. Use Quotient Rule have to use the quotient rule

Example(s) Five: $f(x)=\frac{3 x^{2}+4 x}{x+2}$

Example(s) Six: $f(x)=\left(x^{2}-4 x\right)\left(x^{\frac{1}{2}}+2\right)$

Example(s) Seven: $\left.\frac{d}{d x}\left[\frac{e^{x}}{x^{2}+1}\right]\right|_{x=0}$ and $\left.\frac{d}{d x}\left[\frac{e^{x}}{x^{2}+1}\right]\right|_{x=1}$

Example Eight: Find the tangent line to $f(x)=\frac{2 x}{x-4}$ at $x=6$

Example Nine: If f and g are the functions whose graphs are shown, let $m(x)=f(x) g(x)$ and $q(x)=\frac{f(x)}{q(x)}$.
A.) Find $m^{\prime}(1)$
B.)Find $q^{\prime}(0)$

