

Algebra you should know:

$m^{\frac{a}{b}}=\sqrt[b]{m^{a}}=(\sqrt[b]{m})^{a}$
$m^{-a}=\frac{1}{m^{a}} \quad$ and $\quad \frac{1}{m^{a}}=m^{-a}$

Rules of Exponents

$$
\begin{aligned}
& m^{\frac{a}{b}}= \\
& m^{-a}=
\end{aligned}
$$

Power Rule: For all exponents n
■ $\frac{d}{d x}\left[x^{n}\right]=$ \qquad
■ $\frac{d}{d x}[$ Constant $]=$ \qquad

Examples) One:
Multiply by the exponent and drop the degree by one.
A. $3 x^{2}=$ \qquad
B. $4 x^{3}=$ \qquad
C. $5 x=$ \qquad
D. $2 x^{4}=$ \qquad
E. $x^{\frac{5}{2}}=$ \qquad
F. $3 x^{\frac{1}{2}}=$ \qquad
G. $\left.2 x^{4}\right|_{x=-2}=$
H. $\left.x^{\frac{5}{2}}\right|_{x=4}=$

What is the sum and constant multiple rule of differentiable Functions.

Linearity Rules: Assume that f and g are differentiable functions.
Sum Rule: $\quad(f+g)^{\prime}=$
\square Constant Multiple Rule: $(c f)^{\prime}=$

Example(s) Two: A. $3 x^{2}+4 x-8=$ \qquad
B. $5 x^{3}-4 x^{2}+3 x+5-e^{x}=$ \qquad

Example Three: $f(m)=\sqrt[4]{m}+\sqrt[5]{m}+\sqrt[6]{m^{7}}$ find: $f^{\prime}(m)$

Example Four: $f(x)=\frac{1}{x^{\frac{2}{3}}} \quad$ find $f^{\prime}(x)$

Example Five: $f(x)=(3 x+4)^{2}$ find $f^{\prime}(x)$

Example Six: $f(x)=\sqrt{x}\left(x^{2}+2 x+3\right)$ find $f^{\prime}(x)$

Example Seven: $g(t)=\frac{t^{4}+6 t^{3}-9 t^{2}+5 t}{t}$ Find $g^{\prime}(t)$

Example Eight: $y=\frac{x^{4}+3 x^{3}-2 x^{2}+5}{x^{\frac{1}{2}}}$ Find y^{\prime}

Example Nine: Given $f(x)=e^{x}+3$ find the equation of the tangent line at $\mathrm{x}=0$.

Example Ten: Given $f(x)=3 x^{2}+4 x-8$ find the equation of the tangent line at $\mathrm{x}=2$.

