Notes: Formal Definition of Derivative
Terminology and Notation:
The derivative of f at $x=a$ is the instantaneous rate of change of f at $x=a$. The following notations are used for the derivative of f at $x=a$:

Derivative: $f^{\prime}(x)$	Derivative at a point: $f^{\prime}(a)$ where a is some number	
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$	$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$	$\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Example(s) 1:

A.) Find $\frac{d y}{d x}$ for $f(x)=x^{2}+1$
B.) Find $\left.\frac{d y}{d x}\right|_{x=-1}$
C.) Find $\left.\frac{d y}{d x}\right|_{x=0}$
D.) Find $\left.\frac{d y}{d x}\right|_{x=1}$
E.) Find $\left.\frac{d y}{d x}\right|_{x=2}$

What does this mean graphically?

Example 2:
Find $f^{\prime}(x)$ for $f(x)=\sqrt{x-2}$

Example 3: Remember: $f^{\prime}(x)$ is the same as instant rate of change.
Find $f^{\prime}(x)$ for $f(x)=x^{3}-2 x$

Example 4:
Find the instant rate of change of the function at $x=2$
$f(t)=6+\sqrt{t}$

Tangent Lines: You will always need two things for a tangent line:

1. Point
2. Slope

There are three forms of a line:

1. Slope /Intercept
2. Point/Slope
3. General

Example 5:

Find the equation for the tangent line to $g(x)=\frac{8}{x}$ at $x=4$.

Example 6:

Find the equation for the tangent line to $g(x)=2 x-3$ at $x=2$.

Memorize each of these!!!

Derivative: $f^{\prime}(x)$	Derivative at a point: $f^{\prime}(a)$ where a is some number	
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$	$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$	$\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Example(s) 7:

What is $f(x)$ in each of the following? What is each question asking you to answer?

$\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$	$\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-\sqrt{4}}{h}$ or $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$	$\lim _{x \rightarrow 4} \frac{\sqrt{x}-\sqrt{4}}{x-4}$ or $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
$\lim _{h \rightarrow 0} \frac{(x+h)^{5}-x^{5}}{h}$	$\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}$	$\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}$
$\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$	$\lim _{h \rightarrow 0} \frac{\cos (\pi+h)-(-1)}{h}$	$\lim _{x \rightarrow \pi} \frac{\cos (x)-(-1)}{x-\pi}$
$\lim _{x \rightarrow-1} \frac{\left(x^{2}+2\right)-(3)}{x+1}$	$\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2-\left(x^{2}+2\right)}{h}$	$\lim _{h \rightarrow 0} \frac{(-1+h)^{2}+2-(3)}{h}$
$\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}$	$\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}$	$\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}$
$\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-2\right]-\left(x^{3}-2\right)}{h}$	$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan x-1}{x-\frac{\pi}{4}}$	
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sec x-1}{x-\frac{\pi}{2}}$	$\lim _{h \rightarrow 0} \frac{\ln (5+h)-\ln 5}{h}$	

