BC Calculus	Name	Pd
Limits & Continuity: Review	Date	_Seat #

Please start off every review with reading your notecards for that unit several times!!!!! This is a very limited review!!!!

Limit-intended height (y-value) of the functions.

Properties- add, subtract, multiply, divide, multiply constant & raise to power.

Techniques to Evaluate-

- Direct Substitution-plug the x-value in... if you get a number you are done... If you get an indeterminant form....
 - 1. Try to factor the expression. Cancel common factors & direct substitution.
 - 2. Try table or graphs... try plugging in a number close to the x-value on the right/left
 - 3. L'Hopital's Rule

<u>One Sided limits</u>-Right sided: $\lim f(x)$ Left sided: $\lim f(x)$ If $\lim f(x) = \lim f(x)$ Then $\lim f(x) = exists$ X→C $X \rightarrow C^{-}$

Infinite Limits-lim f(x) = EndBehavior HA: y = 0 / #

 $\lim_{x \to c} \frac{\#}{x - c} = \pm \infty \quad \forall A : x = c$ (Ladies) J-Lo=0 Marilyn=Leading Coeff Dolly = $\pm \infty$ (plug in #) Plug in # •

Practice: Non-Calculator Active-2008 (1-3) Calculator Active (4-5)

1. $\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$ is	2. $\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2}$ is	Key:
a3	a1/2	1.B
b2	b. 0	2.A
c. 2	c. 1	3.A
d. 3	d. 5/3 + 1	4.C
e. nonexistent	e. Nonexistent	5.E
3. Let f be the function defined to the right. Which of the following statements about f are function f with domain $0 < x < 4$. Which of the		

....

Which of the following state	ements about	f are	function f with domain 0	$\leq x \leq 4$. Which of the
 Which of the following state true? I. f has a limit at x=2. II. f is continuous at x=2. III. f is differentiable at x=2. a. I only b. II only c. III only d. I & II only 	ements about $f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} \\ 1 \end{cases}$	f are if $x \neq 2$ if $x = 2$	function f with domain 0 following statements are 1. $\lim_{x\to 2^{-}} f(x)$ exists II. $\lim_{x\to 2^{+}} f(x)$ exists III. $\lim_{x\to 2} f(x)$ exists a. I only b. II only c. I & II only	$\leq x \leq 4$. Which of the true?
e. I, II, & III			c. I & II only d. I & III only	
			e. I, II, & III	

5. The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2 for which f'(c) = 0, which of the following statements must be true?

a. For -2 < k < 2, f'(k) > 0.

b. For -2 < k < 2, f'(k) < 0.

- c. For -2 < k < 2, f'(k) exists.
- d. For -2 < k < 2, f'(k) exists, but f' is not continuous.
- e. For some k, where -2 < k < 2, f'(k) does not exist.

Free Response Practice

Free Response 2011 #6 Non-Calculator

11. Let f be a function defined by

 $f(x) = \begin{cases} 1 - 2\sin x & \text{for } x \le 0\\ e^{-4x} & \text{for } x > 0 \end{cases}$

a.) Show that f is continuous at x=0.

Free Response 2011B #2 **Calculator** 12. A 12,000 liter tank of water is filled to capacity. At t=0, water begins to drain out of the tank at a rate modeled by r(t), measured in liters per hour, where r is given by the piecewise-

defined function $r(t) = \begin{cases} \frac{600t}{t+3} & \text{for } 0 \le t \le 5\\ 1000e^{-0.2t} & \text{for } t > 5 \end{cases}$

a.) Is r continuous at t=5? Show the work that leads to your answer.

15. Given the function
$$f(x) = \frac{x^2 + 2x^2 - 3x}{3x^2 + 3x - 6}$$

- a.) What are the zeros of f(x)?
- b.) What are the vertical asymptotes of f(x)?
- c.) The end behavior model of f(x) is the function g(x). What is g(x)?

d.) What is $\lim_{x\to\infty} f(x)$? What is $\lim_{x\to\infty} \frac{f(x)}{g(x)}$?