\qquad
\qquad Seat \# \qquad

Please start off every review with reading your notecards for that unit several times!!!!! This is a very limited review!!!!

Limit-intended height (y-value) of the functions.
Properties- add, subtract, multiply, divide, multiply constant \& raise to power.
Techniques to Evaluate-

- Direct Substitution-plug the x-value in... if you get a number you are done... If you get an indeterminant form....

1. Try to factor the expression. Cancel common factors \& direct substitution.
2. Try table or graphs... try plugging in a number close to the x-value on the right/left
3. L'Hopital's Rule

One Sided limits-Rightsided: $\lim _{x \rightarrow c^{+}} f(x) \quad$ Leftsided: $\lim _{x \rightarrow c^{-}} f(x)$ If $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)$ Then $\lim _{x \rightarrow c} f(x)=$ exists
Infinite Limits- $\lim _{x \rightarrow \infty} f(x)=$ EndBehavior HA: $y=0 / \#$ $\lim _{x \rightarrow c} \frac{\#}{x-c}= \pm \infty \quad V A: x=c$

- (Ladies) J-Lo=0 Marilyn=Leading Coeff Dolly = $\pm \infty$ (plug in \#) - Plug in \#

Practice: Non-Calculator Active-2008 (1-3) Calculator Active (4-5)

1. $\lim _{x \rightarrow \infty} \frac{(2 x-1)(3-x)}{(x-1)(x+3)}$ is
2. $\lim _{x \rightarrow 0} \frac{5 x^{4}+8 x^{2}}{3 x^{4}-16 x^{2}}$ is
a. -3
a. $-1 / 2$
b. -2
b. 0
c. 2
c. 1
d. 3
d. $5 / 3+1$

Key:
1.B
2.A
3.A
4.C
5.E
e. nonexistent
e. Nonexistent
3. Let f be the function defined to the right. Which of the following statements about f are true?
I. f has a limit at $x=2$.
II. f is continuous at $x=2$.
III. f is differentiable at $x=2$.
$f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$
a. I only
b. II only
c. III only
d. I \& II only
e. I, II, \& III
4. The figure to the right shows the graph of a function f with domain $0 \leq x \leq 4$. Which of the following statements are true?

1. $\lim _{x \rightarrow 2^{-}} f(x)$ exists
II. $\lim _{x \rightarrow 2^{+}} f(x)$ exists
III. $\lim _{x \rightarrow 2} f(x)$ exists
a. I only

b. II only
c. I \& II only
d. I \& III only
e. I, II, \& III
2. The function f is continuous for $-2 \leq \mathrm{x} \leq 2$ and $f(-2)=f(2)=0$. If there is no c , where $-2<\mathrm{c}<2$ for which $f^{\prime}(c)=0$, which of the following statements must be true?
a. For $-2<k<2, f^{\prime}(k)>0$.
b. For $-2<k<2, f^{\prime}(k)<0$.
c. For $-2<k<2$, $f^{\prime}(k)$ exists.
d. For $-2<k<2, f^{\prime}(k)$ exists, but f^{\prime} is not continuous.
e. For some k, where $-2<k<2$, $f^{\prime}(k)$ does not exist.
\qquad
\qquad Limits \& Continuity: Review

Date

\qquad Seat \# \qquad
Practice: Non-Calculator Active-2003 (6-9) Calculator Active (10)
6. For $x \geq 0$, the horizontal line $y=2$ is an asymptote for the graph of the function f. Which of the following must be true?
a. $f(0)=2$
b. $f(x) \neq 2$ for all $x \geq 0$
c. $f(2)$ is undefined
d. $\lim _{x \rightarrow 2} f(x)=\infty$
e. $\lim _{x \rightarrow \infty} f(x)=2$
8. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
a. a
b. b
c. C
d. d
e. e

7. $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x^{2}+3 x-4}{4 x^{3}-3 x^{2}+2 x-1}=$
a. 4
b. 1
c. $1 / 4$
d. 0
e. -1
9. Let f be the function given to the right. Which of the following statements are true about f?
I. $\lim _{x \rightarrow 3} f(x)$ exists.
II. f is continuous at $x=3 . \quad f(x)= \begin{cases}x+2 & \text { if } x \leq 3 \\ 4 x-7 & \text { if } x>3\end{cases}$
III. f is differentiable at $x=3$.
a. None
b. I only
c. II only
d. I \& || only
e. I, II, \& III
10. For which of the following does $\lim _{x \rightarrow 4} f(x)$ exist?
a. I only
b. II only
c. III only
d. I \& II only
e. I \& III only

Free Response Practice

Free Response 2011 \#6 Non-Calculator
11. Let f be a function defined by
$f(x)= \begin{cases}1-2 \sin x & \text { for } x \leq 0 \\ e^{-4 x} & \text { for } x>0\end{cases}$
a.) Show that f is continuous at $x=0$.

Free Response 2011B \#2 Calculator
12. A 12,000 liter tank of water is filled to capacity. At $t=0$, water begins to drain out of the tank at a rate modeled by $r(t)$, measured in liters per hour, where r is given by the piecewise-
defined function $r(t)= \begin{cases}\frac{600 t}{t+3} & \text { for } 0 \leq t \leq 5 \\ 1000 e^{-0.2 t} & \text { for } t>5\end{cases}$
a.) Is r continuous at $t=5$? Show the work that leads to your answer.
\qquad

Limits \& Continuity: Review
Free Response 2008 \#6 Non-Calculator
13. Let f be the function given by $f(x)=\frac{\ln x}{x}$ for
all $x>0$. The derivative of f is given by
$f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$,
a) Find $\lim _{x \rightarrow 0^{+}} f(x)$

Date \qquad Seat \# \qquad
Free Response 2003 \#6 Non-Calculator
14. Lef f be the function defined by
$f(x)=\left\{\begin{array}{ll}\sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ 5-x & \text { for } 3<x \leq 5\end{array}\right.$.
a.) Is f continuous at $x=3$? Explain why or why not?

Free Response Practice Non-Calculator
15. Given the function $f(x)=\frac{x^{3}+2 x^{2}-3 x}{3 x^{2}+3 x-6}$.
a.) What are the zeros of $f(x)$?
b.) What are the vertical asymptotes of $f(x)$?
c.) The end behavior model of $f(x)$ is the function $g(x)$. What is $g(x)$?
d.) What is $\lim _{x \rightarrow \infty} f(x)$? What is $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$?

