Taylor Error: Actual and LaGrange

Actual Error

This is the real amount of error, not the error bound (worst case scenario). It is the difference between the actual $f(x)$ and the polynomial.

Steps:

1. Substitute x-value into $f(x)$ to get a value.
2. Substitute x-value into the polynomial and get another value.
3. The difference between the two is the error.

Example:
Approximate $f(.1)$ using a $2^{\text {nd }}$ degree Taylor polynomial centered at $a=0$
$f(x)=\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots \ldots$.
$f(0.1)=\frac{1}{1-.1}=1.111111 \ldots$
$P_{2}(.1)=1+(.1)+(.1)^{2}=1.11$

$$
\begin{aligned}
\text { Error } & =f(.1)-P_{2}(.1) \\
& =1.111111 \ldots-1.11 \\
& =.001111 \ldots .
\end{aligned}
$$

La Grange

This method uses a special form of the Taylor formula to find the error bound of a polynomial approximation of a Taylor series.

The LaGrange Formula:
Error bound $=\frac{f^{n+1}(z)(x-a)^{n+1}}{(n+1)!}$
The variable z is a number between x and a, but to find the error bound, z ends up being equal to one of the two. To determine whether the z value will be the same as x or a, you must substitute each number into $f^{n+1}(z)$ to see which gives the greatest number.

For example:

Approximate $f(.1)$ using a $2^{\text {nd }}$ degree Taylor polynomial centered at $a=0$
If you are trying to find the error of a $2^{\text {nd }}$ degree Taylor polynomial approximation of $f(x)=\frac{1}{1-x}$, you must first find the $3^{\text {rd }}$ derivative, because the formula uses $f^{n+1}(z)$, not $f^{n}(z)$.
$f^{\prime}(x)=\frac{1}{(1-x)^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}, \quad$ and $f^{\prime \prime}(x)=\frac{6}{(1-x)^{4}}$
Also, for this function, $x=.1$ and $a=0$. Substitute these two values into the $3^{\text {rd }}$ derivative.
$f^{3}(0)=\frac{6}{(1-0)^{4}}=6$
$f^{3}(.1)=\frac{6}{(1-.1)^{4}}=\mathbf{9 . 1 4 5} \leftarrow$ this is bigger!

Next, substitute in 9.145 for $f^{n+1}(z)$ in the La Grange formula:
Error bound $=\frac{9.145(.1-0)^{3}}{3!}=.00152$

Exception!

\Downarrow
When $f(x)=\sin (x)$ or $\cos (x)$, the value for $f^{n+1}(z)$ will always be equal to 1 , because that is the greatest value of any sine or cosine function.

Examples for La Grange error bound:

a. Find the upper bound for the error for the $5^{\text {th }}$ degree polynomial approximation of e. e is equal to e^{1}, whose series can be determined from the McLaurin series of e^{x}.

$$
e^{1}=\frac{(1)^{0}}{0!}+\frac{(1)^{1}}{1!}+\frac{(1)^{2}}{2!}+\frac{(1)^{3}}{3!}+\frac{(1)^{4}}{4!}+\frac{(1)^{5}}{5!}
$$

The La Grange formula is,

$$
\frac{f^{(6)}(z)(x)^{6}}{6!}
$$

All derivatives of e^{x} are e^{x}, so $f^{6}(z)=e^{z}$
To find z, substitute in the values for a and x into e^{z}.

$$
\begin{gathered}
a=0, e^{0}=1 \\
x=1, e^{1}=e \\
e>1 \quad, \text { so } z=1 \\
\frac{e^{1}(1)^{6}}{6!}=\frac{e}{6!}=\frac{e}{720}=.00377
\end{gathered}
$$

The actual error for this $5^{\text {th }}$ degree polynomial falls somewhere between the real value of e^{1} and $e^{1}+.00377$.

$$
\begin{aligned}
& e^{1}=2.71828 \\
& e^{1} \approx 1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}=2.71666
\end{aligned}
$$

The error is $2.71828-2.71666$, which equals 0.00162 . This number is less than the upper bound for the error, 0.00377 , which shows how the La Grange formula works.
b. What degree Taylor polynomial for $\ln (1.2)$ might have an error less than 0.001 ? (In other words, the upper bound for the error would be 0.001)

First, start off with the La Grange formula, whose value must be less than 0.001 :

$$
\frac{f^{n+1}(z)(x-a)^{n+1}}{(n+1)!}<0.001 \quad \text { For the function } \ln (x), a=1 .
$$

The derivatives of $\ln (x)$ are as follows:

$$
f(x)=\ln (x), f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=\frac{-1}{x^{2}}, f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}, f^{\prime \prime \prime \prime}(x)=\frac{-6}{x^{4}}
$$

Since you don't know the value of n, a general formula for the $n+1$ derivative must be used. The formula for the $n t h$ derivative can be obtained from above and is as follows:
$f^{n}(x)=\frac{(-1)^{n+1}(n-1)!}{x^{n}} \quad$ To find $f^{n+1}(x)$, simply substitute $n+1$ for n into that equation:

$$
f^{n+1}(x)=\frac{(-1)^{n+2}(n)!}{x^{n+1}}
$$

This is what you will put into the La Grange formula for $f^{n+1}(z)$, changing x to z.

Still, you must find the value for z . It will be equal to either a or x. When substituting the two values into the above list of derivative for $\ln (x)$, you find that 1 always produces the greater value, so $\mathrm{z}=1$.

Now, the error bound formula looks something like this:
$\frac{\frac{(-1)^{n+2}(n)!}{z^{n+1}}(x-a)^{n+1}}{(n+1)!}=\frac{\frac{(n)!}{z^{n+1}}(1.2-1)^{n+1}}{(n+1)!}=\frac{n!}{(n+1)!} \cdot \frac{(.2)^{n+1}}{z^{n+1}}=\frac{1}{n+1}\left(\frac{.2}{z}\right)^{n+1}<0.001$
$\frac{1}{n+1}(.2)^{n+1}<0.001$
Next you must simply use the concept of trial and error. Choose values for n and keep substituting them in to the inequality. When the term on the left ends up being greater than 0.001 , you know that you have crossed the line and your value for n will be the previous number (before the value exceeded 0.001).
$\frac{1}{3+1}(.2)^{3+1}=.0004<.001$
$\frac{1}{2+1}(.2)^{2+1}=.00267>.001$
The value for n is 3 .

