AP Calculus
Review for Application of Integration Test

Name \qquad
Date \qquad Pd Day 9

Use the figure at the right to write an integral expression that represents the given. Do not evaluate.

1. The area of \mathfrak{R}_{1}
2. The area of \mathfrak{R}_{2}
3. The area of \mathfrak{R}_{3}

4. The area of \mathfrak{R}_{4}
5. The volume of \Re_{2} revolved about the x-axis.
6. The volume of \Re_{3} revolved about the y-axis.
7. \quad The volume of \Re_{1} revolved about the $x=a$.
8. The volume of \Re_{2} revolved about the $y=-1$.
9. The volume of \Re_{4} revolved about the x-axis.
10. The volume of \Re_{5} revolved about the $y=1$.

AP Calculus
Review for Application of Integration Test

Name \qquad
Date \qquad Pd \qquad Day 9
11. Compute the area of the region bounded by the functions $x=y+4$ and $x=y^{2}-2$.

No Calculator

12. Compute the area of the region bounded by $y=x^{2}$ and $y=\sqrt{x}$

No Calculator

13. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the indicated lines. $\quad y=\sqrt{x}, y=0$, and $x=4$ Set up each. DO NOT INTEGRATE!!
A. The x-axis
B. The y-axis

C. The line $x=4$
D. The line $x=6$
E. The line $y=-3$
\qquad
14. Find the volume of the solid generated by the solid with base region bounded by the graphs of the equations about the indicated lines. $\quad y=\sqrt{x}, y=0$, and $x=4$ Set up each. DO NOT INTEGRATE!!
A. Cross sections perpendicular to x-axis are squares.
B. Cross sections perpendicular to the x-axis are semi-circles.

C. Cross sections perpendicular to the x-axis are rectangles with width being on the base and length is 3 times the width.
D. Find the region \mathfrak{R} is the base of a solid, at each x the cross section perpendicular to the x-axis has area $A(x)=\sin \left(\frac{\pi}{4} x\right)+1$. Find the volume of the solid.
E. Cross sections perpendicular to y-axis are equilateral triangles.
F. Cross sections perpendicular to y-axis are isosceles triangles with leg on the base.
15. The base of a solid is the region in the first quadrant enclosed by the parabola $y=3 x^{2}$, the line $x=1$ and the x-axis. Each cross section of the solid perpendicular to the x-axis is a square. The volume of the solid is:
A. π
B. $\frac{9}{5}$
C. $\frac{9 \pi}{5}$
D. $\frac{16}{5}$
E. 1
16. The base of a solid is the region enclosed by the parabola $y=x^{2}-2 x+4$ and $y=1+2 x$. If each cross section of the solid perpendicular to the \mathbf{x}-axis is a rectangle with a height that is 3 times the width, what is the volume of the solid?
\qquad
Review for Application of Integration Test \qquad Pd
Calculators may be used on this portion of the test.
Answer the following.
17. Find the area bounded by the curves $-x+y=2$ and $y=-x^{2}+4 x+2$.

18. Find the area bounded by the curves $y=2 \sin x$ and $y=\tan x,-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}$

19. A region is bounded by the curve $y=x^{2}+2, y=6$, and $x=0$. Find the volume generated by revolving the region about the y-axis.

\qquad
Review for Application of Integration Tes \dagger
Date \qquad Pd Day 9
20. Let R be the region in the firs \dagger quadrant bounded by the x-axis and the graphs of
$y=\ln x$ and $y=5-x$, as shown in the
figure to the right.

a.) Find the area of R.
b.) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression involving one or more integrals that gives the volume of the solid.
c.) The horizontal line $y=k$ divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.

AP Calculus
Review for Application of Integration Test
Solve using separation of variables.
21. $y^{\prime}=x y^{2}$

Name \qquad
Date \qquad Pd Day 9
22. $y^{\prime}=0.5 x y$
23. $y^{\prime}=9 y$
24. $y^{\prime}=2(4-y)$
25. $\frac{d y}{d x}=2 \sqrt{y}$
26. $y^{\prime}=y^{2}\left(1-x^{2}\right)$

AP Calculus
Review for Application of Integration Test
\qquad
Date \qquad Pd Day 9

Find the particular solution using the given point.
27. $y^{\prime}=2 y-4$ $(1,4)$
28. $y^{2} \frac{d y}{d x}=x^{-3} \quad(2,0)$

Find the average value of the function on the given interval. (Integrate by hand)
29. $f(x)=x^{2} ;[-1,1]$
30. $g(x)=\cos x,\left[0, \frac{\pi}{2}\right]$
31. $f(t)=t \sqrt{1+t^{2}},[0,5]$
32. $g(x)=x^{2} \sqrt{1+x^{3}},[0,2]$

AP Calculus
Review for Application of Integration Test

Name
Date \qquad Pd d Day 9
33. Consider the differential equation $\frac{d y}{d x}=(3-y) \cos x$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(0)=1$. The function f is defined for all real numbers.
a.) A portion of the slope field of the differential equation is given to the right. Sketch the solution curve through the point $(0,1)$

b.) Write an equation for the line tangent to the solution curve in part (a) at the point $(0,1)$. Use the equation to approximate $f(0.2)$.
c.) Find $y=f(x)$, the particular solution to the differential equation with the initial condition $f(0)=1$.

AP Calculus
Review for Application of Integration Test

Name \qquad Pd Day 9

Answers:

1. $\int_{0}^{c} f(x)-g(x) d x$
2. $\int_{c}^{a} g(x)-f(x) d x$
3. $\int_{0}^{b} g^{-1}(y) d y$
4. $\int_{0}^{b} a-f^{-1}(y) d y$
5. $\pi \int_{c}^{a}[g(x)]^{2}-[f(x)]^{2} d x$
6. $\pi \int_{0}^{b}\left[g^{-1}(y)\right]^{2} d y$
7. $\pi \int_{-b}^{0}\left[a-f^{-1}(y)\right]^{2}-\left[a-g^{-1}(y)\right]^{2} d y$
8. $\pi \int_{c}^{a}[g(x)+1]^{2}-[f(x)+1]^{2} d x$
9. $\pi \int_{c}^{a}[f(x)]^{2} d x$
10.

$\pi \int_{0}^{c}[1-f(x)]^{2}-1 d x$
11. $\frac{125}{6}$
12. $\frac{1}{3}$
13.
a) $\pi \int_{0}^{4} x d x$ b) $\pi \int_{0}^{2} 16-y^{4} d y$ c) $\pi \int_{0}^{2}\left(4-y^{2}\right)^{2} d y \quad$ d) $\pi \int_{0}^{2}\left(6-y^{2}\right)^{2}-4 d y \quad$ e) $\pi \int_{0}^{4}(\sqrt{x}+3)^{2}-9 d x$
14.
a) $\int_{0}^{4} x d x$
b) $\frac{\pi}{8} \int_{0}^{4} x d x \quad$ c) $3 \int_{0}^{4} x d x$
d) $\int_{0}^{4} A(x) d x$
e) $\frac{\sqrt{3}}{4} \int_{0}^{2}\left(4-y^{2}\right)^{2} d y$ f) $\frac{1}{2} \int_{0}^{2}\left(4-y^{2}\right)^{2} d y$
15. B
16. 3.2
17. 4.5
18. .614
19. 25.132
20.
a) 2.985
b) $\int_{1}^{3.6934}(\ln (x))^{2} d x+\int_{3.6934}^{5}(5-x)^{2} d x$
c) $1.493=\int_{0}^{k} 5-y-e^{y} d y$
21.

$$
y=\frac{-1}{\frac{1}{2} x^{2}+C}
$$

22.

$$
y=C e^{\frac{1}{4} x^{2}}
$$

23. $y=C e^{9 x}$
24.

$y=\frac{1}{C e^{2 x}}+4$
25. $y=(x+c)^{2}$
26. $y=\frac{-1}{x-\frac{1}{3} x^{3}+C}$
27. $y=2 e^{2 x-2}+2$
30. $\frac{2}{\pi}$
28. $y=\sqrt[3]{\frac{-3}{2 x^{2}}+\frac{3}{8}}$
29. $\frac{1}{3}$
31. $\frac{1}{5}\left((\sqrt{26})^{3}-1\right)$
32. $\frac{26}{9}$
33. a)

b) $\quad 1.4$

$$
y=3-2 e^{-\sin x}
$$

