\qquad Pd.
Optimization
Day 7 Application of
Derivatives

1. A box with a square base and open top must have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used. Answer: $40 \cdot 40 \cdot 20$
2. If $1200 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Answer: $20 \cdot 10$
3. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides cost $\$ 6$ per square meter. Find the cost of materials for the cheapes \dagger such container. Answer: $\$ 163.54$
4. Find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius r. Answer: $\ell \cdot w=2 r \sqrt{\frac{1}{2}} \cdot 2 r \sqrt{\frac{1}{2}}$
\qquad Pd. \qquad
Optimization
Derivatives
5. Find the point on the parabola $y=x^{2}-6$ that is closest to the point $(0,3)$.

Answer: $\left(\pm \sqrt{\frac{17}{2}}, \frac{5}{2}\right)$
6. A farmer has 3600 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fencing along the river. What are the dimensions of the field that has the largest area? Answer: 900•1800•900
7. A rectangular storage container with open top is to have a volume of $800 \mathrm{~m}^{3}$. The length of its base is three times the width. Material for the base costs $\$ 25$ per square meter. Material for the sides costs $\$ 15$ per square meter. Find the cost of materials for the cheapest such container. Answer: \$8033.20

