AP Calculus
Derivatives in Function Notation
Supplement
Name \qquad
D(1)
Day 6

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-2	3	1	-5	8
-1	-9	7	4	1
0	5	9	9	-3
1	3	-3	2	6
2	-5	3	8	$?$

Assume that $f(x)$ and $g(x)$ are differentiable functions about which we know very little. In fact, assume that all we know about these function is the table of data to the left.

This isn't a lot of information. For example, we can't compute $f^{\prime}(3)$ with any degree of accuracy. But we are still able to figure some things out, using the rules of differentiation.

1. Let $w(x)=f(g(x))$. What is $w^{\prime}(1)$?
2. Let $b(x)=f(x)(2 x-3)^{2}$. What is $b^{\prime}(2)$?
3. Let $h(x)=(\sqrt[3]{x})^{4} f(x)$. What is $h^{\prime}(1)$?
4. Let $l(x)=x^{3} g(x)$. If $l^{\prime}(2)=-48$, what is $g^{\prime}(2)$?
5. Let $m(x)=\frac{g(x)}{f(x)}$. What is $m^{\prime}(-2)^{\text {? }}$?
6. Let $d(x)=f(\sqrt{x})$. What is $d^{\prime}(0)$?
7. Let $j(x)=-4 f(x) g(x)$. What is $j^{\prime}(1)$?
8. Let $k(x)=\frac{x f(x)}{g(x)}$. What is $k^{\prime}(2)$? Hint: use $g^{\prime}(2)$ from \#7

Answers:

1. $w^{\prime}(1)=18$
2.

$m^{\prime}(-2)=\frac{29}{9}$
3. $b^{\prime}(2)=-17$
4. $d^{\prime}(0)=d n e$
5. $h^{\prime}(1)=1$
6. $j^{\prime}(1)=-48$
7. $g(2)=-18 \quad 8$.
8. $k^{\prime}(2)=-\frac{43}{16}$

9. Let $w(x)=g(f(x))$. What is $w^{\prime}(1)$?

Answers:

9. $w^{\prime}(1)=0$
10. $b^{\prime}(-4)=-3 e^{-8}$
11. $h^{\prime}(2)=\frac{1}{2 \sqrt{-1}}=$ imaginary
12.

$k^{\prime}(2)=-\frac{1}{9}$
10. $m^{\prime}(2)=\frac{5}{12}$
12. $d^{\prime}(4)=\frac{1}{3}$
14. $j^{\prime}(1)=\frac{10}{3}$
16. $\ell^{\prime}(-4)=64$
11. Let $b(x)=f(x) e^{2 x}$. What is $b^{\prime}(-4)$?
13. Let $h(x)=\sqrt{f(x)}$. What is $h^{\prime}(2)$?
15. Let $k(x)=\frac{\sec x}{f(x)}$. What is $k^{\prime}(0)$?
10. Let $m(x)=\frac{f(x)}{g(x)}$. What is $m^{\prime}(2)$?
14. Let $j(x)=f(x) g(2 x)$. What is $j^{\prime}(1)$?
16. Let $l(x)=2 x^{3} g(x)$. What is $l^{\prime}(-4)$

