Day 6 App of Int

Pd.____

Find the area of the given region.

1. \mathcal{R}_1

2. R₂

3. \mathcal{R}_3

Find the volume generated by rotating the given region about the given line						
4. \mathcal{R}_1 about OA	5. \mathcal{R}_1 about AB	6. \mathcal{R}_1 about \mathcal{OC}				
7. \mathcal{R}_2 about $\mathcal{O}A$	8. \mathcal{R}_2 about OC	9. \mathcal{R}_2 about line $y=-5$				
10. \mathcal{R}_3 about AB	11. \mathcal{R}_3 about BC	12. \mathcal{R}_3 about \mathcal{OC}				

Let \mathcal{R} be the region bounded by the curves $y = \frac{1}{\sqrt{x}}$, y = 1, and x = 4.

a.) Find the area of \mathcal{R} .

b.) Suppose the line x = k divides \mathcal{R} into two regions of equal area. Find the value of k.

c.) Find the volume of the solid generated by revolving \mathcal{R} about the y-axis.

d.) Find the volume of the solid generated by revolving \mathcal{R} about the line y=2.

e.) Find the volume of the solid whose base is the region \mathcal{R} and whose cross sections cut by perpendicular planes to the x-axis are equilateral triangles.