Integration Day 5

Directions: For the functions in the table below, find each of the following to complete the chart.

1. Use a midpoint Riemann Sum with $\Delta x = 0.5$ to approximate the definite integral,

Name_

 $\int f(x)dx$

- 2. Find the antiderivative, F(x), of the given function.
- 3. Evaluate the antiderivative at each of the limits of the definite integral (find F(a) and F(b)).

f(x)	a	b	$\int^{b} f(x) dx$	F(x) (function)	F(a)	F(b)
			(value)			
X ²	0	2				
X ³	1	2				
4x	1	5				
sinx	0	π				
x + 5	2	6				
$3x^2 + 2x$	1	2				

AP Calculus Fundamental Theorem of Calculus Party Name_

Integration Day 5

Analysis:

1. Compare the values of $\int_{a}^{b} f(x)dx$ to the value of F(a) and F(b). What relationship exists between these three values?

2. The first Fundamental Theorem expresses the definite integral as a function of the antiderivatives F(a) and F(b). What do you think the First Fundamental theorem says?

3. Test your "theory" from part 2 on the definite integral $\int x^4 dx$.

a. According to your theory, what value would your integral equal?

b. Check to see if your theory holds by graphing on your calculator. Calculate the definite integral by using 2nd Calc 7: $\int_{a}^{b} f(x)dx$. Choose x =1 as the lower limit and x = 3 as the upper limit. If your theory was incorrect, go back and revise and recheck it.

4. The Fundamental Theorem of Calculus only holds for continuous functions over [a, b]. In your own words and using the integral notation we've learned, state the First Fundamental Theorem of Calculus as a hypothesis (what conditions must be true) and a conclusion (what are you guaranteed will happen under those conditions).