\qquad
Fundamental Theorem of Calculus Party
Integration Day 5

Discovering the Fundamental Theorem of Calculus

Directions: For the functions in the table below, find each of the following to complete the chart.

1. Use a midpoint Riemann Sum with $\Delta x=0.5$ to approximate the definite integral,
$\int_{a}^{b} f(x) d x$
2. Find the antiderivative, $F(x)$, of the given function.
3. Evaluate the antiderivative at each of the limits of the definite integral (find $F(a)$ and F(b)).

| $\mathbf{f (x)}$ | a | \mathbf{b} | $\int_{a}^{b} f(x) d x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (value) | | | |$)$

\qquad

Analysis:

1. Compare the values of $\int_{a}^{b} f(x) d x$ to the value of $\mathrm{F}(\mathrm{a})$ and $\mathrm{F}(\mathrm{b})$. What relationship exists between these three values?
2. The first Fundamental Theorem expresses the definite integral as a function of the antiderivatives $F(a)$ and $F(b)$. What do you think the First Fundamental theorem says?
3. Test your "theory" from part 2 on the definite integral $\int_{1}^{3} x^{4} d x$.
a. According to your theory, what value would your integral equal? \qquad
b. Check to see if your theory holds by graphing on your calculator. Calculate the definite integral by using $2^{\text {nd }}$ Calc 7: $\int_{a}^{b} f(x) d x$. Choose $\mathrm{x}=1$ as the lower limit and $\mathrm{x}=3$ as the upper limit. If your theory was incorrect, go back and revise and recheck it.
4. The Fundamental Theorem of Calculus only holds for continuous functions over [a,b]. In your own words and using the integral notation we've learned, state the First Fundamental Theorem of Calculus as a hypothesis (what conditions must be true) and a conclusion (what are you guaranteed will happen under those conditions).
