

2-4: Explain why the function is discontinuous at the given number *a*. Sketch the graph of the function.

5-6: How would you "remove the discontinuity" of f? In other words, how would you define f(2) in order to make f continuous at 2?

5. $f(x) = \frac{x^2 - x - 2}{x - 2}$	6. $f(x) = \frac{x^3 - 8}{x^2 - 4}$

AP Calculus AB	Name	
Continuity	Limits, Cont., & R.O.C Day 7	
7-8: Find the numbers at which f is discontinu	numbers at which f is discontinuous. At which of these numbers is f	
continuous from the right, from the left, or neither? Sketch the graph of f .		
7.	8.	
$ (1+x^2 if x \le 0 $	$ \begin{pmatrix} x+2 & if \ x < 0 \\ \end{pmatrix} $	
$f(x) = \begin{cases} 2-x & \text{if } 0 < x \le 2 \end{cases}$	$f(x) = \begin{cases} e^x & \text{if } 0 \le x \le 1 \end{cases}$	
$\left((x-2)^2 \qquad if x>2 \right)$	(2-x) if $x > 1$	

9. For what value of the constant c is the function f continuous on $(-\infty, \infty)$? $f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2\\ x^3 - cx & \text{if } x \ge 2 \end{cases}$

10. Find the values of a and b that make fcontinuous everywhere.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 \le x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$$

1a. x = -2 b.c $\lim_{x \to -2} f(x) = d.n.e$ and x = 2 b.c $\lim_{x \to 2} f(x) = d.n.e$ and x = 4 b.c $\lim_{x \to 4} f(x) = d.n.e$ b. omit

2. Discontinuous at a = 2 b.c $\lim_{x \to 2} f(x) = d.n.e$ 3. Discontinuous at a = 1 b.c $\lim_{x \to 1} f(x) \neq f(1)$ 4. Discontinuous at a = 0 b.c $\lim_{x \to 0} f(x) \neq f(0)$

5. Let f(2) = 3 6. Let f(2) = 3 7. Discontinuous at x = 0 b.c $\lim_{x \to 0} f(x) = d.n.e$

8. Discontinuous at x = 0 b.c $\lim_{x \to 0} f(x) = d.n.e$ and x = 1 b.c $\lim_{x \to 1} f(x) = d.n.e$

10. $a = \frac{1}{2}$ and $b = \frac{1}{2}$ (Please do not lose your mind over #10!!!! It is HARD!!) 9. $C = \frac{2}{3}$