Volume with Cross Sections

1. The base of the volume is the region bounded by the curves $y=8-x^{2}$ and $y=x^{2}$. The cross sections perpendicular to the x-axis are:
a. Squares
b. Equilateral triangles
c. Semi-circles

2. The base of the volume is the region bounded by the curve $y=2+\sin x$, the $x$-axis, $x=0$ and $x=\frac{3 \pi}{2}$. The cross sections perpendicular to the $x$-axis are:
a. Squares
b. Equilateral triangles
c. Semi-circles

3. Let $R$ be the region bounded by the graphs of $y=\sqrt{x}$ and $y=\frac{x}{2}$. The region $R$ is the base of a solid. For this solid, each cross section perpendicular to the $\boldsymbol{y}$-axis are squares. Find the volume of the solid.

4. Let $\boldsymbol{R}$ be the region bounded by the $x$-axis, the $y$-axis, the graph of $y=\cos x$. The region $R$ is the base of a solid. For this solid, each cross section perpendicular to the $\mathbf{x}$-axis is a rectangle whose height is $2-x$. Find the volume of the solid.


AP Calculus
Volume with Cross Sections

Name
Application of Integration Day 4

## 5. Multiple Choice




The base of a loudspeaker is determined by the two curves $y=\frac{x^{2}}{10}$ and $y=-\frac{x^{2}}{10}$ for $1 \leq x \leq 4$, as shown in the figure above. For this loudspeaker, the cross sections perpendicular to the $x$-axis are squares. What is the volume of the loudspeaker, in cubic units?
(A) 2.046
(B) 4.092
(C) 4.200
(D) 8.184
(E) 25.711
6. The base of a solid is the region in the first quadrant enclosed by the parabola $y=4 x^{2}$, the line $x=1$ and the $x$-axis. Each cross section of the solid perpendicular to the $x$-axis is a square. The volume of the solid is:
A. $\frac{4 \pi}{3}$
B. $\frac{16 \pi}{5}$
C. $\frac{4}{3}$
D. $\frac{16}{5}$
E. $\frac{64}{5}$
7. A solid has its base in the $x y$-plane, bounded by the $x$-axis, the $y$-axis, and the function $y=$ $3-x^{5}$. If cross sections taken perpendicular to the $x$-axis are semicircles whose diameters are in the xy-plane, what is the volume of this solid?
A. 3.335
B. 4.247
C. 5.239
D. 6.671
E. 13.342

AP Calculus
Volume with Cross Sections

Name
Application of Integration Day 4

## Review: © Must show your work to get credit $)_{\text {; }}$ NON-CALCULATOR

8. If $y=x^{2} \ln x$, what is $\frac{d y}{d x}$ in terms of $x \& y$ ?
a.) $x(2 \ln (x)+1)$
b) $y(2 x \ln (x)+1)$
fc) $y\left(2 x+\frac{1}{x}\right)$
d) $y(2 \ln x+x)$
e) $x y(2 \ln x+2)$
9. If the derivative of a function is given as
$f^{\prime}(x)=\frac{x-6}{e^{x}}$, then in which open interval is the function both increasing and concave up?
a.) $(-\infty, 5)$
b) $(-\infty, 6)$
c) $(5,6)$
d) $(6,7)$
e) $(7, \infty)$
10. Which of the following expressions represents the average value of $f(x)=\sqrt{2 x-1}$ in $[1,3]$ ?
11. If $f(x)=\sin x, g(x)=\cos (2 x)$, and
$h(x)=f(g(x))$, what is $h^{\prime}\left(\frac{\pi}{4}\right)$ ?
a.) $\frac{\sqrt{2(3)-1}-\sqrt{2(1)-1}}{2}$
b) $f(2)$
c) $\int_{1}^{3} \sqrt{2 x-1} d x$
d) $\frac{1}{3} \int_{1}^{3} \sqrt{2 x-1} d x$
e) $\frac{1}{2} \int_{1}^{3} \sqrt{2 x-1} d x$
a.) -2
b) $-\sqrt{2}$
c) 0
d) $\sqrt{2}$
e) 2

## Answers:

1.)
$V=\int_{-2}^{2}\left(8-2 x^{2}\right)^{2} d x$
b.) $V=\frac{\sqrt{3}}{4} \int_{-2}^{2}\left(8-2 x^{2}\right)^{2} d x$
c) $V=\frac{\pi}{8} \int_{-2}^{2}\left(8-2 x^{2}\right)^{2} d x$
$V=\frac{2048}{15}$
$V=\frac{512 \sqrt{3}}{15}$
$V=\frac{256 \pi}{15}$
2.)

$$
\text { a.) } \begin{aligned}
V & =\int_{0}^{\frac{3 \pi}{2}}(2+\sin x)^{2} d x \\
V & =25.205 \text { or } 25.206
\end{aligned}
$$

b.) $V=\frac{\sqrt{3}}{4} \int_{0}^{\frac{3 \pi}{2}}(2+\sin x)^{2} d x$
C) $V=\frac{\pi}{8} \int_{0}^{\frac{3 \pi}{2}}(2+\sin x)^{2} d x$
$V=10.914$

$$
V=9.898
$$

3.) $\frac{16}{15}$
4.) 1.429
8.) A
9.) D
5.) $D$
6.) $D$
7.) A
10.) E
11.) A

