AP Calculus Volume with Cross Sections

Name_

Application of Integration Day 4 P_{1}^{2}

1. The base of the volume is the region bounded by the curves $y = 8 - x^2$ and $y = x^2$. The cross sections perpendicular to the x-axis are:

b. Equilateral triangles

c. Semi-circles

2. The base of the volume is the region bounded by the curve $y = 2 + \sin x$, the x-axis, x = 0 and $x = \frac{3\pi}{2}$. The cross sections perpendicular to the x-axis are: a. Squares

b. Equilateral triangles

c. Semi-circles

AP Calculus Volume with Cross Sections

3. Let R be the region bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{2}$. The region R is the base

of a solid. For this solid, each cross section perpendicular to the **y-axis** are squares. Find the volume of the solid.

4. Let **R** be the region bounded by the x-axis, the y-axis, the graph of $y = \cos x$. The region **R** is the base of a solid. For this solid, each cross section perpendicular to the **x-axis** is a rectangle whose height is 2 - x. Find the volume of the solid.

AP Calculus Volume with Cross Sections

5. Multiple Choice

The base of a loudspeaker is determined by the two curves $y = \frac{x^2}{10}$ and $y = -\frac{x^2}{10}$ for $1 \le x \le 4$, as shown in the figure above. For this loudspeaker, the cross sections perpendicular to the *x*-axis are squares. What is the volume of the loudspeaker, in cubic units?

(A) 2.046 (B) 4.092 (C) 4.200 (D) 8.184 (E) 25.711

6. The base of a solid is the region in the first quadrant enclosed by the parabola $y = 4x^2$, the line x = 1 and the x-axis. Each cross section of the solid perpendicular to the x-axis is a square. The volume of the solid is:

A.
$$\frac{4\pi}{3}$$
 B. $\frac{16\pi}{5}$ C. $\frac{4}{3}$
D. $\frac{16}{5}$ E. $\frac{64}{5}$

7. A solid has its base in the xy-plane, bounded by the x-axis, the y-axis, and the function $y = 3 - x^5$. If cross sections taken perpendicular to the x-axis are semicircles whose diameters are in the xy-plane, what is the volume of this solid?

A. 3.335	B. 4.247	C.	5.239

D. 6.671 E. 13.342

Review: © Must show your work to get credit © NON-CALCULATOR

8. If
$$y = x^2 \ln x$$
, what is $\frac{dy}{dx}$ in terms of x & y?
a.) $x(2\ln(x)+1)$
b) $y(2x\ln(x)+1)$
fc) $y\left(2x+\frac{1}{x}\right)$
d) $y(2\ln x+x)$
e) $xy(2\ln x+2)$

10. Which of the following expressions represents the average value of $f(x) = \sqrt{2x-1}$ in [1,3]?

a.)
$$\frac{\sqrt{2(3)-1} - \sqrt{2(1)-1}}{2}$$

b) $f(2)$
c) $\int_{1}^{3} \sqrt{2x-1} dx$
d) $\frac{1}{3} \int_{1}^{3} \sqrt{2x-1} dx$

e)
$$\frac{1}{2}\int_{1}^{3}\sqrt{2x-1}dx$$

9. If the derivative of a function is given as $f'(x) = \frac{x-6}{e^x}$, then in which open interval is the function both increasing and concave up? a.) (-∞,5) (-∞,6) b) (5,6) C) (6,7) d) (7,∞) e) 11. If $f(x) = \sin x$, $g(x) = \cos(2x)$, and $h(\mathbf{x}) = f(g(\mathbf{x}))$, what is $h'\left(\frac{\pi}{4}\right)$? a.) -2 -√2 b) 0 C) $\sqrt{2}$ d) 2 e)

Answers:
1.) a.)
$$V = \int_{-2}^{2} (8 - 2x^{2})^{2} dx$$

 $V = \frac{2048}{15}$
2.) a.) $V = \int_{0}^{\frac{3\pi}{2}} (2 + \sin x)^{2} dx$
 $V = 25.205 \text{ or } 25.206$
3.) $\frac{16}{15}$
8.) A 9.) D
b.) $V = \frac{\sqrt{3}}{4} \int_{-2}^{2} (8 - 2x^{2})^{2} dx$
 $V = \frac{\sqrt{3}}{4} \int_{-2}^{2} (8 - 2x^{2})^{2} dx$
 $V = \frac{\sqrt{3}}{4} \int_{0}^{2} (2 + \sin x)^{2} dx$
 $V = \frac{\sqrt{3}}{4} \int_{0}^{\frac{3\pi}{2}} (2 + \sin x)^{2} dx$
 $V = \frac{\sqrt{3}}{4} \int_{0}^{\frac{3\pi}{2}} (2 + \sin x)^{2} dx$
 $V = 10.914$
Answers:
 $V = \frac{\pi}{8} \int_{0}^{\frac{3\pi}{2}} (2 + \sin x)^{2} dx$
 $V = 9.898$
7.) A
10.) E
11.) A