AP Calculus Intervals of Inc/Dec & Concavity (2) 1-4: Find a)-c) for each of the following:

1. $f(x) = \frac{x}{x^2 + 1}$

a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

2. $f(x) = \cos^2 x - 2\sin x$, $0 \le x \le 2\pi$ a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

3. $f(x) = e^{2x} + e^{-x}$

a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

Pd.

AP Calculus Intervals of Inc/Dec & Concavity (2)

 $4. \quad f(x) = x^2 \ln x$

a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

5. $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

6. $f(x) = x^2 - x - \ln x$ a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

7.
$$f(x) = \frac{x^2}{x^2 + 3}$$

a.)Find the intervals on which f is increasing or decreasing.

b.)Find the local maximum and minimum values of f.

c.)Find the intervals of concavity and the inflection points.

AP CalculusName____Pd.__Intervals of Inc/Dec & Concavity (2)Day 3 Curve Sketching8-10: Find the local maximum and minimum values of f using both the First and SecondDerivatives Tests. Which method do you prefer?

8.
$$f(x) = 1 + 3x^2 - 2x^2$$

9.
$$f(x) = \frac{x^2}{x-1}$$

10.
$$f(x) = \sqrt{x} - \sqrt[4]{x}$$

11. a.) Find the critical numbers of $f(x) = x^4(x-1)^3$.

b.) What does the Second Derivatives test tell you about the behavior of f at these critical numbers?

c.) What does the First Derivatives Test tell you

Answers:

1) a Increasing:
$$(-1,1)$$

Decreasing: $(-\infty,-1)$ & $(1,\infty)$

2) a Increasing:
$$\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

Decreasing: $\left(0, \frac{\pi}{2}\right) \& \left(\frac{3\pi}{2}, 2\pi\right)$

- a Increasing: $(-.231,\infty)$ 3) Decreasing: $(-\infty, -.231)$
- 4) а Increasing: $\left(e^{-\frac{1}{2}},\infty\right)$ Decreasing: $\left(0, e^{-\frac{1}{2}}\right)$
- 5) Increasing: $\left(0, \frac{\pi}{4}\right) \& \left(\frac{5\pi}{4}, 2\pi\right)$ b Maximum: $x = \frac{\pi}{4}$ a Decreasing: $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$
- 6) a Increasing: $(1,\infty)$ Decreasing: (0,1)
- 7) a Increasing: $(0,\infty)$ Decreasing: $(-\infty, 0)$

b Maximum: x = 1Minimum: x = -1

b Maximum:
$$x = \frac{3\pi}{2}$$

Minimum: $x = \frac{\pi}{2}$

b Maximum: none Minimum: x = -.231

b Maximum: none Minimum: $x = e^{-\frac{1}{2}}$

Minimum: $x = \frac{5\pi}{4}$

b Maximum: none Minimum: x = 1

b Maximum: none Minimum: x = 0

Day 3 Homework Answers

C Concave Up:
$$(-\sqrt{3},0)$$
 & $(\sqrt{3},\infty)$
Concave Down: $(-\infty, -\sqrt{3})$ & $(0,\sqrt{3})$
POI: $x = \pm\sqrt{3}$ & 0
C Concave Up: $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$
Concave Down: $\left(0, \frac{\pi}{6}\right)$ & $\left(\frac{5\pi}{6}, 2\pi\right)$
POI: $x = \frac{\pi}{6}$ & $\frac{5\pi}{6}$
C Concave Up: $(-\infty,\infty)$
Concave Down: none
POI: none
C Concave Up: $\left(e^{-\frac{3}{2}},\infty\right)$
Concave Down: $\left(0,e^{-\frac{3}{2}}\right)$
POI: $x = e^{-\frac{3}{2}}$
C Concave Up: $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$
Concave Down: $\left(0, \frac{3\pi}{4}\right)$ & $\left(\frac{7\pi}{4}, 2\pi\right)$
POI: $x = \frac{3\pi}{4}$ & $\frac{7\pi}{4}$
C Concave Up: $(0,\infty)$
Concave Down: none
POI: none
C Concave Up: $(-1,1)$
Concave Down: $(-\infty, -1)$ & $(1,\infty)$
POI: $x = \pm 1$

- Minimum at x = 0 because that is where f'(x) changes from negative to positive. 8) Maximum at x = 1 because that is where f'(x) changes from positive to negative. Minimum at x = 0 because that is where f'(x) = 0 & f''(x) > 0. Maximum at x = 1 because that is where f'(x) = 0 & f''(x) < 0.
- Maximum at x = 0 because that is where f'(x) changes from positive to negative. 9) Minimum at x = 2 because that is where f'(x) changes from negative to positive. Maximum at x = 0 because that is where f'(x) = 0 & f''(x) < 0. Minimum at x = 2 because that is where f'(x) = 0 & f''(x) > 0.
- 10) Minimum at $x = \frac{1}{16}$ because that is where f'(x) changes from negative to positive. Minimum at $x = \frac{1}{16}$ because that is where f'(x) = 0 & f''(x) > 0.

11) a
$$x = 0, \frac{4}{7}, \& 1$$
 b $f''(0) = f''(1) = 0$ tells you nothing.
 $f''(\frac{4}{7}) > 0$ tells you $f(x)$ has a minimum

X=0 Max b.c. f'(x) changes + to -С X=4/7 Min b.c. f'(x) changes - to + X=1 neither b.c. f'(x) does not change sign