\qquad
Intervals of Inc/Dec \& Concavity (2)
1-4: Find a)-c) for each of the following:

1. $f(x)=\frac{x}{x^{2}+1}$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
2. $f(x)=\cos ^{2} x-2 \sin x, \quad 0 \leq x \leq 2 \pi$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
3. $f(x)=e^{2 x}+e^{-x}$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
\qquad Pd.
Intervals of Inc/Dec \& Concavity (2)
4. $f(x)=x^{2} \ln x$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
5. $f(x)=\sin x+\cos x, \quad 0 \leq x \leq 2 \pi$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
6. $f(x)=x^{2}-x-\ln x$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
7. $f(x)=\frac{x^{2}}{x^{2}+3}$
a.) Find the intervals on which
f is increasing or decreasing.
b.) Find the local maximum and minimum values of f.
c.) Find the intervals of concavity and the inflection points.
\qquad Pd. \qquad Intervals of Inc/Dec \& Concavity (2)

Day 3 Curve Sketching
8-10: Find the local maximum and minimum values of f using both the First and Second Derivatives Tests. Which method do you prefer?
8. $f(x)=1+3 x^{2}-2 x^{3}$
9. $f(x)=\frac{x^{2}}{x-1}$
10. $f(x)=\sqrt{x}-\sqrt[4]{x}$
11.
a.) Find the critical numbers of $f(x)=x^{4}(x-1)^{3}$.
b.) What does the Second Derivatives test tell you about the behavior of f at these critical numbers?
c.) What does the First Derivatives Test tell you

1) a Increasing: $(-1,1)$
Decreasing: $(-\infty,-1) \&(1, \infty)$
b Maximum: $x=1$ Minimum: $x=-1$
2) a Increasing: $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$

Decreasing: $\left(0, \frac{\pi}{2}\right) \&\left(\frac{3 \pi}{2}, 2 \pi\right)$
b Maximum: $x=\frac{3 \pi}{2}$
Minimum: $x=\frac{\pi}{2}$
3)
3) a Increasing:(-.231, $\infty)$

Decreasing: (-,--.231$)$
4) a

$$
\begin{aligned}
& \text { Increasing: }\left(e^{-\frac{1}{2}}, \infty\right) \\
& \text { Decreasing: }\left(0, e^{-\frac{1}{2}}\right)
\end{aligned}
$$

b Maximum: none Minimum: $x=-.231$
b Maximum: none Minimum: $x=e^{-\frac{1}{2}}$
5) a Increasing: $\left(0, \frac{\pi}{4}\right) \&\left(\frac{5 \pi}{4}, 2 \pi\right)$

Decreasing: $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
6) a Increasing: $(1, \infty)$

Decreasing: $(0,1)$
7) a Increasing: $(0, \infty)$

Decreasing: $(-\infty, 0)$
b Maximum: $x=\frac{\pi}{4}$ Minimum: $x=\frac{5 \pi}{4}$
b Maximum: none Minimum: $x=1$
b Maximum: none Minimum: $x=0$
c Concave Up: $\left(e^{-\frac{3}{2}}, \infty\right)$
Concave Down:(0, $\left.e^{-\frac{3}{2}}\right)$
POI: $x=e^{-\frac{3}{2}}$
C Concave Up: $(-\sqrt{3}, 0) \&(\sqrt{3}, \infty)$
Concave Down: $(-\infty,-\sqrt{3}) \&(0, \sqrt{3})$
POI: $x= \pm \sqrt{3} \& 0$
C Concave Up: $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$
Concave Down: $\left(0, \frac{\pi}{6}\right) \&\left(\frac{5 \pi}{6}, 2 \pi\right)$
POI: $x=\frac{\pi}{6} \& \frac{5 \pi}{6}$
c Concave Up: $(-\infty, \infty)$
Concave Down:none POI: none

C Concave Up: $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$
Concave Down: $\left(0, \frac{3 \pi}{4}\right) \&\left(\frac{7 \pi}{4}, 2 \pi\right)$
POI: $x=\frac{3 \pi}{4} \& \frac{7 \pi}{4}$
c Concave Up: $(0, \infty)$
Concave Down: none POI: none
C Concave Up: $(-1,1)$
Concave Down: $(-\infty,-1) \&(1, \infty)$
POI: $x= \pm 1$
8) Minimum at $x=0$ because that is where $f^{\prime}(x)$ changes from negative to positive.

Maximum at $x=1$ because that is where $f^{\prime}(x)$ changes from positive to negative.
Minimum at $x=0$ because that is where $f^{\prime}(x)=0 \& f^{\prime \prime}(x)>0$.
Maximum at $x=1$ because that is where $f^{\prime}(x)=0 \& f^{\prime \prime}(x)<0$.
9) Maximum at $x=0$ because that is where $f^{\prime}(x)$ changes from positive to negative.

Minimum at $x=2$ because that is where $f^{\prime}(x)$ changes from negative to positive.
Maximum at $x=0$ because that is where $f^{\prime}(x)=0 \& f^{\prime \prime}(x)<0$.
Minimum at $x=2$ because that is where $f^{\prime}(x)=0 \& f^{\prime \prime}(x)>0$.
10) Minimum at $x=1 / 16$ because that is where $f^{\prime}(x)$ changes from negative to positive.

Minimum at $x=1 / 16$ because that is where $f^{\prime}(x)=0 \& f^{\prime \prime}(x)>0$.
11) a $\begin{aligned} & x=0, \frac{4}{7}, \& 1 \text { b } \quad f^{\prime \prime}(0)=f^{\prime \prime}(1)=0 \text { tells you nothing. } \\ & f^{\prime \prime}(4 / 7)>0 \text { tells you } f(x) \text { has a min }\end{aligned}$
$f^{\prime \prime}(4 / 7)>0$ tells you $f(x)$ has a minimum
c $\quad X=0$ Max b.c. $f^{\prime}(x)$ changes + to $X=4 / 7$ Min b.c. $f^{\prime}(x)$ changes - to + $X=1$ neither b.c. $f^{\prime}(x)$ does not change sign

