AP Calculus
Approximating Integrals by Estimating Area

1. A.) By reading values from the given graph of f, use four rectangles to find a under estimate (L_{4}) and an upper estimate (R_{4}) for the area under the graph of f from $x=0$ to $x=8$. In each case sketch the rectangles you use.
under estimate $\left(L_{4}\right)=$
upper estimate $\left(R_{4}\right)=$
B.) Find new estimates using eight rectangles
under estimate $\left(L_{8}\right)=$
upper estimate $\left(R_{8}\right)=$
2. A.) Use six rectangles to find estimates of each type for the area under the graph of f from $x=0$ to $x=12$.
(i) L_{6}
(ii) R_{6}
(iii) M_{6}
B.) Is L_{6} an underestimate or overestimate of the area?
C.) Is R_{6} an underestimate or overestimate of the area?
D.) Which of the numbers L_{6}, R_{6}, or M_{6} gives the best estimate? Explain?
\qquad
Integration Day 2

AP Calculus
Approximating Integrals by Estimating Area

Name
Integration Day 2
3. A.) Estimate the area under the graph of $f(x)=1+x^{2}$ from $\mathrm{x}=-1$ to $\mathrm{x}=2$ using three rectangles and right endpoints. Then improve your estimate by using six rectangles. Sketch the curve and the approximating rectangles.
B.) Repeat part (a) using left endpoints.
C.) Repeat part (a) using midpoints.
D.) From your sketches in parts (a)-(c), which appears to be the best estimate?
A.)

B.)

C.)

4. The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find the estimates for the distance that she traveled during these three seconds by finding L_{6} and R_{6}.
5. Oil leaked from a tank at a rate of $r(t)$ liters per hour. The rate decreased as time passed and values of the rate at two-hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.

$\dagger(\mathrm{s})$	0	0.5	1.0	1.5	2.0	2.5	3.0
v	0	6.2	10.8	14.9	18.1	19.4	20.2
$(\mathrm{ft} / \mathrm{s})$							
L_{6}							

R_{6}

$\dagger(\mathrm{h})$	0	2	4	6	8	10
$\mathrm{r}(\mathrm{t})$ $(\mathrm{L} / \mathrm{h})$	8.7	7.6	6.8	6.2	5.7	5.3

L_{5}
R_{5}

AP Calculus	Name
Approximating Integrals by Estimating Area	Integration Day 2
6. The velocity graph of a braking car is shown. Use it to estimate the distance traveled by the car while the brakes are applied.	

Answers:

1-Answers
a.) $L_{4} \approx 33 \quad R_{4} \approx 41$
may vary
2-Answers
may vary
3-Answers
a.) $L_{6} \approx 86.5 \quad R_{6} \approx 68.5 \quad M_{6} \approx 77.7$
b.)
c.)
M_{6} you
overestimate underestimate explain
must be exact
4-Answers
must be
exact
5-Answers
must be
exact
6-Answers This problem does not tell you what approximation
may vary to use. Use any type with as many rectangles as you would like. I used a M_{6} to find my approximation. $M_{6} \approx 150$ feet

AP Calculus
Approximating Integrals by Estimating Area Approximate Using Trapezoids

1. Answer the following given the graph :
A. T_{4}
B. T_{6}
C. T_{12}

2. Answer the following given the table

$\dagger(\mathrm{s})$	0	.5	1	1.5	2	2.5	3
$\mathrm{v}(\mathrm{ft} . / \mathrm{s})$	0	5	15	20	15	10	5

A. T_{1}
B. T_{3}
C. T_{6}
3. Let $f(x)=x^{2}+1 \quad,[0,3]$
A. R_{3}
B. L_{3}
C. T_{3}

AP Calculus
Approximating Integrals by Estimating Area
4. $\int_{0}^{4} \sqrt{x} d x, T_{4}$
5. $\int_{1}^{4} \frac{d x}{x}, T_{6}$
6. $\int_{0}^{1} e^{-x^{2}} d x, T_{6}$

Answers:

1-Answers may
a.) $\quad T_{4} \approx 65.7$
b.) $T_{6} \approx 66.1$
c.) $\quad T_{12} \approx 66.55$
vary
2-Answers must be the same
3-Answers must be
a.) $T_{1} \approx 7.5$
b.) $\quad T_{3} \approx 32.5$
c.) $\quad T_{6} \approx 33.75$
the same
4-6: Answers must be the same.
$4-T_{4} \approx 5.1463$
$5-T_{6} \approx 1.4054$
$6-T_{6} \approx 1.1177$

