Notes: Critical Numbers, Intervals of Increasing/Decreasing, Intervals of Concavity, \& POI

Example One: Use the graph of $f$ to find the following:
Intervals of
Increasing:
Decreasing:
Maximum:
Minimum:
Intervals of
Concave Upward:
Concave Downward:


Points of Inflection: A number $c$ in the domain of $f$ is called a point of inflection
If: $\quad f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)=$ does not exist
And: If sign change at $c$
Then: $x=c$ is a point of inflecton

Critical points: A number $c$ in the domain of $f$ is called a critical point If: $\quad f^{\prime}(c)=0$ or $f^{\prime}(c)=$ does not exist

Then: $x=c \quad$ is a critical point.

Increasing/Decreasing Behavior of Function
$\square$ If $f^{\prime}(x)>0$, then $f$ is $\qquad$
$\square$ If $f^{\prime}(x)<0$, then $f$ is $\qquad$

## Concave Up/Concave Down Behavior of Function

How does the sign of the second derivative relate to the original
function?

How does the sign of the first derivative relate to the original function?
Critical
Numbers

AD

If $f^{\prime \prime}(x)<0$, then $f$ is $\qquad$

Points of Inflection

Notes: Critical Numbers, Intervals of Increasing/Decreasing,
Intervals of Concavity, \& POI
Example Two: $f(x)=x^{3}-27 x-20$

Critical Numbers:
Intervals of
Increasing:
Decreasing:
Maximum Value:
Minimum Value:
Possible Points of Inflection:
Intervals of
Concave Upward:
Concave Downward:
Point(s) of Inflection:

Example Three: $f(x)=\frac{1}{3} x^{3}-x^{2}+x$

Critical Numbers:
Intervals of
Increasing:
Decreasing:
Maximum Value:
Minimum Value:
Possible Points of Inflection:
Intervals of
Concave Upward:
Concave Downward:
Point(s) of Inflection:

Notes: Critical Numbers, Intervals of Increasing/Decreasing,
Intervals of Concavity, \& POI
Example Four: $f(x)=3 x^{5}-5 x^{4}+1$

Critical Numbers:
Intervals of
Increasing:
Decreasing:
Maximum Value:
Minimum Value:
Possible Points of Inflection:
Intervals of
Concave Upward:
Concave Downward:
Point(s) of Inflection:

Example Five:

Where does $f(x)$ have critical numbers?

Where is $f(x)$ increasing?

Where is $f(x)$ decreasing?

Are the critical values local
 minimums, maximums, or neither?

Where is $f(x)$ concave upward?

Where is $f(x)$ concave downward?

Where does $f(x)$ have points of inflections?

What is the difference between critical numbers and points of inflection?

