AP Calculus	Name	Pd
Optimization	Day 2 Application	of Derivatives
1. Find two numbers whose difference is 100 c minimum.	and whose product is a	Answers: 50 & -50
2. Find two positive numbers whose product is minimum.	100 and whose sum is a	10 & 10
3. The sum of two positive numbers is 16. What value of the sum of their squares?	is the smallest possible	8 & 8
4. Find the dimensions of a rectangle with perin as large as possible.	meter 100 m whose area is	25 & 25
5. Find the dimensions of a rectangle with area	$11000m^3$ whose perimeter is	10√10 & 10√10
as small as possible.		10010 & 10010

AP Calculus
Optimization

Name____Pd.__ Day **2**Application of Derivatives

6. A farmer wants to fence an area of 1.5 million square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence?

Answers: 1500 & 1000

7. Find the point on the line y = 2x + 3 that is closest to the origin.

$$\left(-\frac{6}{5},\frac{3}{5}\right)$$

8. Find the point on the curve $y = \sqrt{x}$ that is closest to the point (3,0).

$$\left(\frac{5}{2}, \sqrt{\frac{5}{2}}\right)$$

9. Find the points on the ellipse $4x^2 + y^2 = 4$ that are furthest away from the point (1,0).

$$\left(-\frac{1}{3},\pm\frac{4\sqrt{2}}{3}\right)$$