\qquad Pd.
Rolle's Theorem \& Mean Value Theorem
Day 1 Curve Sketching Unit

1-4: Verify that the function satisfies the three hypotheses of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.

1. $f(x)=5-12 x+3 x^{2}$,
$[1,3]$
2. $f(x)=x^{3}-x^{2}-6 x+2$,
$[0,3]$
3. $f(x)=\sqrt{x}-\frac{1}{3} x, \quad[0,9]$
4. $f(x)=\cos (2 x), \quad\left[\frac{\pi}{8}, \frac{7 \pi}{8}\right]$
5. Let $f(x)=1-x^{\frac{2}{3}}$. Show that $\mathrm{f}(-1)=\mathrm{f}(1)$ but there is no number c in $(-1,1)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's theorem?

6-7: Use the graph to the right to answer the questions.
6. Use the graph of f to estimate the values of c that satisfy the conclusion of the Mean Value Theorem for the interval $[0,8]$.
7. Use the graph of f to estimate the values of c that satisfy the conclusion of the Mean Value Theorem for the interval [1,7].

\qquad Pd.
Rolle's Theorem \& Mean Value Theorem
Day 1 Curve Sketching Unit 8-11: Verify that the function satisfies the hypotheses of the Mean Value Theorem of the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
8. $f(x)=2 x^{2}-3 x+1, \quad[0,2]$
9. $f(x)=x^{3}-3 x+2, \quad[-2,2]$
10. $f(x)=\ln (x), \quad[1,4]$
11. $f(x)=\frac{1}{x}$,

12-13: Find the number c that satisfies the conclusion of the Mean Value Theorem on the given interval. Graph the function, the secant line through the endpoints, and the tangent line at $(c, f(c))$. Are the secant line and the tangent line parallel?
12. $f(x)=\sqrt{x}, \quad[0,4]$

13. $f(x)=e^{-x}, \quad[0,2]$

14. Let $f(x)=(x-3)^{-2}$. Show that there is no value of c in $(1,4)$ such that $f(4)-f(1)=f^{\prime}(c)(4-1)$. Why does this not contradict the Mean Value Theorem?
15. Let $f(x)=2-|2 x-1|$. Show that there is no value c such that $f(3)-f(0)=f^{\prime}(c)(3-0)$. Why does this not contradict the Mean Value Theorem?

Answers:

1) $x=2$
2) $x=1.786$
3) $x=\frac{9}{4}$
4) $x=\frac{\pi}{2}$
5) $\quad f^{\prime}(x)=\frac{-2}{3 \sqrt[3]{x}}$ and $f^{\prime}(0)=d n e \therefore f(x)$ is not differentiable on $(-1,1)$. So Rolle's theorem does not apply.
6) $x \approx .3,3, \& 6.3$
7) $x \approx 3.2 \& 6.1$
8) $x=1$
9) $x= \pm \sqrt{\frac{4}{3}} \approx 1.155$
10) $x=\frac{3}{\ln 4} \approx 2.164$
11) $x=\sqrt{3} \approx 1.732$
12) $x=1$
13) $x=-\ln \left(\frac{1-e^{-2}}{2}\right) \approx .839$
14) $f^{\prime}(x)=-2(x-3)^{-3}=\frac{-2}{(x-3)^{3}}$ and $f^{\prime}(3)=$ dne $\therefore f(x)$ is not differentiable on $(1,4)$. So Mean Value theorem does not apply.
15) $f(x)=2{\underset{2}{3}}^{3}|2 x-1| \quad f(x)$ is not differentiable at $x=\frac{1}{2} \therefore f(x)$ is not differentiable on $(0,3)$. So Mean Value theorem does not apply.
