Notes: Rolle's Theorem \& Mean Value Thm. Day 1 Curve Sketching
Rolle's Theorem: Let f be a function that satisfies the following three hypothesis:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).
3. $f(a)=f(b)$

Then there exists a number c in (a, b) such that $f^{\prime}(c)=0$.

Example One: Verify that the function satisfies the three hypothesis of Rolle's Theorem on the given interval. Then find all numbers c that satisfy the conclusion of Rolle's Thm.
A.) $f(x)=x^{4}-x^{2}$ on $[-2,2]$
B.) $f(x)=x^{2}-3 x+2$ on $[1,2]$

Notes: Rolle's Theorem \& Mean Value Thm. Day 1 Curve Sketching Mean Value Theorem: Let f be a function that satisfies the following hypothesis:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b). Then there exists a number c in (a, b) such that

Value Thm.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ Or $f(b)-f(a)=f^{\prime}(c)(b-a)$

Example(s) Two: Find a point c satisfying the conclusion of the $M V T$ for the given function and the interval:
A. $f(x)=\sqrt{x}$
$(1,9)$
B. $f(x)=e^{x}-x$
$(-1,1)$

Example Three: Find a point c satisfying the conclusion of the $M V T$ for the given function and the interval:
$f(x)=x^{3}-x$ on $[0,2]$

