1-6: Find the average value of the function on the given interval.

1.
$$f(x) = 4x - x^2$$
, [0,4]

2.
$$f(x) = \sin(4x)$$
, $[-\pi, \pi]$

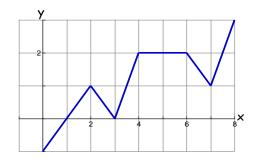
$$[-\pi,\pi]$$

3.
$$g(x) = \sqrt[3]{x}$$
, [1,8]

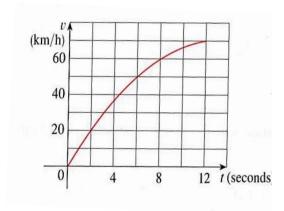
4.
$$f(t) = e^{\sin t} \cos t$$
, $\left[0, \frac{\pi}{2}\right]$

$$\left[0,\frac{\pi}{2}\right]$$

5.
$$h(x) = \cos^4 x \sin x, \quad [0, \pi]$$


6.
$$h(u) = (3-2u)^{-1}$$
, $[-1,1]$

7-8: A.) Find the average Value of f on the given interval. B.) find c such that $f_{avg} = f(c)$. C.) Sketch the graph of f and a rectangle whose area is the same as the area under the graph of f.


7.
$$f(x) = (x-3)^2$$
, [2,5]

8.
$$f(x) = \frac{1}{x}$$
, [1,3]

- 9. Find the numbers b, such that the average value of $f(x) = 2 + 6x 3x^2$ on the interval [0,b] is equal to 3.
- 10. Find the average value of f on [0,8]

- 11. The velocity graph of an accelerating car is shown.
- A.) Use the Midpoint rule to estimate the average velocity of the car during the first 12 seconds.
- B.) At what time was the instantaneous velocity equal to the average velocity?

12. In a certain city the temperature (in oF) thours after 9 AM was modeled by the function

$$T(t) = 50 + 14\sin\left(\frac{\pi t}{12}\right)$$

Find the average temperature during the period from 9AM to 9PM.

Review:

Must show your work to get credit

NON-CALCULATOR

13. If $f(x) = \frac{\ln x}{x}$, what is f'(x)?

- a.) $\frac{1}{x}$
- b) 1+lnx
- c) $1-\ln x$
- d) $\frac{1+\ln x}{x^2}$

14. How many points of inflection exist for the function $y = \sin x$ on the open interval

- $0 < x < 2\pi$?
- a.) 4
- b) 3
- C) 2
- d) 1
- e) none

15. For $xy^2 - 3x = y^3$, find y' when $\left(\frac{1}{2}, -1\right)$ 16. What is the value of $\lim_{x \to 0} \frac{\tan x}{x}$?

- a.) -1
- b)
- c) $-\frac{1}{2}$ d) 0 e) $\frac{1}{2}$

- a.) 0
- b) 1
- c) ∞
- d) $-\infty$
- e) none of these

Answers:

1.
$$\frac{8}{3}$$

- 1. $\frac{8}{3}$ 2. 0 3. $\frac{45}{28}$ 4. $\frac{2}{\pi}(e-1)$ 5. $\frac{2}{5\pi}$ 6. $\frac{1}{4}\ln 5$ 7. a.) 1 b.) x = 4 c.) sketch 8. a.) $\frac{1}{2}\ln 3$ b.) $x = \frac{2}{\ln 3} \approx 1.8$ c.) sketch 9. $\frac{3 \pm \sqrt{5}}{2}$ 10. $\frac{9}{8}$ 11. a.) $\frac{45}{hr}$ b.) 5 seconds 12. $\frac{28}{\pi} + 50$

$$9. \qquad \frac{3 \pm \sqrt{5}}{2}$$

12.
$$\frac{28}{\pi} + 50$$