\qquad

1-2 Approximate the area:

1. a. R_{3}
C. T_{6}

2. $f(x)=\ln (x)+2$ from $[1,13]$
a. T_{3}
b. L_{4}
C. R_{6}

3-4. Given the second derivative and the given information find the original function.
3. $f^{\prime \prime}(x)=x^{-\frac{3}{2}}$
$f^{\prime}(4)=1$ and $f(4)=4$
4. $f^{\prime \prime}(x)=x-\cos x, f^{\prime}(0)=2$ and $f(0)=-2$

5-9. Given $\int_{0}^{1} f(x) d x=3, \int_{0}^{2} f(x) d x=1$, and $\int_{1}^{5} f(x) d x=8$ answer each of the following questions:
5. $\int_{0}^{5} f(x) d x=$
6. $\int_{1}^{2} f(x) d x=$
7. $\int_{2}^{5} f(x) d x=$
8. $\int_{3}^{3} f(x) d x=$
9. $\int_{2}^{0} f(x) d x$

10-12 Set Up each Integral without a calculator DO NOT INTEGRATE!!!:
10. $\int_{-3}^{3}\left|x^{3}+1\right| d x$
11. $\int_{0}^{2 \pi}|\cos x| d x$
12. $\int_{-3}^{3}\left|-x^{2}-x+6\right| d x$
\qquad

Answer questions 13-18 using the graph below:

$A(x)=\int_{0}^{x} f(t) d t$
13. $\quad A(1)=$

14. $A(4)=$
15. $A(8)=$
16. $A^{\prime}(1)=$
17. $A^{\prime}(3)=$
18. $A^{\prime}(6)=$

Given the Graphs answer the following questions

Graph for 19-22
Let $A(x)=\int_{0}^{x} f(t) d t$

Graph for 23-26

Let $A(x)=\int_{0}^{x} f(t) d t$

23. What intervals is $A(x)$ Increasing:
Decreasing:
24. What intervals is $A(x)$ Concave Up:
Concave Down:
25. Where does $A(x)$ have extrema and what are they?
26. Where does $A(x)$ have points of inflection?

Evaluate each: 27-30
27. $\frac{d}{d x} \int_{0}^{x} \sin ^{-1} t^{3} d t$
28. $\frac{d}{d x} \int_{7}^{x^{2}}\left(3 t^{3}+t\right) d t$
29. $\frac{d}{d x} \int_{x}^{2 \pi} \tan t d t$
30. $\frac{d}{d x} \int_{0}^{2 x} \sqrt{2 t^{2}-1} d t$
31. A population of insects increases at a rate of $300-20 t+.32 t^{2}$ insects per day/ Find the insect population after 5 days if you start out with 10 insects at $t=0$. Calculator
32. Find the total displacement and total distance traveled. Draw a diagram. From $[0,10]$ of $v(t)=20-8 t$ Non-Calculator

Name \qquad
33. Suppose a particle travels along a linear path at a velocity of $v(t)=1-\sin (\pi t)$, in meters per second, on the interval $0 \leq t \leq 1$. If the particle starts at a position 4 meters from the origin, find the position function. Calculator
34. Coal gas is produced at a gasworks. Pollutants in the gas are removed by scrubbers, which become less and less efficient as time goes on. Measurements made at the start of each month showing the rate at which pollutants are escaping in the gas are as follows.

Time(months)	0	1	2	3	4	5	6
Rate pollutants are escaping (tons/month)	5	7	8	10	13	16	20

a.) Estimate the amount of pollutants that escape during the 6 month interval using a LeftRiemann sum with six subintervals of equal length and values from the table.
b.) Estimate the amount of pollutants that escape during the 6 month interval using a Right-Riemann sum with six subintervals of equal length and values from the table.
c.) Estimate the amount of pollutants that escape during the 6 month interval using a Trapezoidal sum with six subintervals of equal length and values from the table.
d.) Estimate the amount of pollutants that escape during the 6 month interval using the Midpoint sum with three subintervals of equal length and values from the table.
35. A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon ($\dagger=0$) and 8 P.M. ($\dagger=8$). The number of entries in the box thours after noon is modeled by a differentiable function E for $0 \leq t \leq 8$. Values of $E(t)$, in hundreds of entries at various times \dagger are shown in the table below.

\dagger (hours)	0	2	5	7	8
$E(t)$ (hundreds of entries)	0	4	13	21	23

a.) Use a trapezoidal sum with the four subintervals given by the table to approximate the number of entries received from noon to 8 P.M.
b.) Using a Left-Riemann sum with four subintervals given by the table to approximate the number of entries received from noon to 8 P.M.
c.) Using a Right-Riemann sum with four subintervals given by the table to approximate the number of entries received from noon to 8 P.M.
\qquad
36. The figure below shows the graph of the velocity, v , of an object (in $\mathrm{m} / \mathrm{sec}$). Estimate the total distance the object traveled between $t=0$ and $t=6$.

37. The speed of an object is recorded in the table below.

$\dagger(\mathrm{seconds})$	0	3	6	9	12	15	18	21	24
$\mathrm{v}(\mathrm{m} / \mathrm{sec})$	11	15	18	20	16	15	20	22	25

Estimate the distance traveled by the object.
a.) From $t=0$ to $t=12$ seconds using 4 left rectangles with equal subintervals.
c.) From $t=0$ to $t=24$ seconds using 4 midpoint rectangles with equal subintervals.
e.) From $t=0$ to $t=24$ seconds using 8 trapezoids with equal subintervals.
b.) From $t=0$ to $t=24$ seconds using 4 left rectangles with equal subintervals.
d.) From $t=0$ to $t=24$ seconds using 2
midpoint rectangles with equal subintervals.
f.) From $t=0$ to $\dagger=24$ seconds using 4 trapezoids with equal subintervals.

AP Calculus
Review

Name \qquad
Integration Day 13

Answers:

1)

a 33.6
b. $\quad 32.4$
C. 33
Answers will vary
2)
44.3565
b. 40.9044
C. 47.6281

Must be exact
3) $f(x)=-4 \sqrt{x}+2 x+4$
4) $f(x)=\frac{1}{6} x^{3}+2 x+\cos (x)-3$
${ }_{1}^{\text {5) }} \quad \int_{-3}^{11}\left(x^{3}+1\right) d x$
6) -2
11)
$\int_{0}^{\frac{\pi}{2}}(\cos (x)) d x-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} 10 \quad$ 8) 0
12) Let $f(x)=-x^{2}-x+6$ $\int_{-3}^{2} f(x) d x-\int_{2}^{3} f(x) d x$
13) 1
19) No
14
23) Inc: $(0,5) \&(7.5,11.5)$ 20)
$R^{15)}-2+2 \pi$
16) 0
17) -2
18) 2
21) P
22) $L, M, N, \& Q$
Dec: $(5,7.5) \&(11.5,14)$
24)
CC $\uparrow:(0,2.5),(6,9),(13,14)$
25) Max: $x=5 \& 11.5$
26) $\mathrm{POI}: x=2.5,6,9, \& 13$
27) $\sin ^{-1}\left(x^{3}\right)$
28)
CC $\downarrow:(2.5,6),(9,13)$
Min: $x=7.5$
31) 3514 bugs
32) displacement $=-200$ distance $=250$
33) $p(t)=t+\frac{\cos (\pi t)}{\pi}+4-\frac{1}{\pi}$
34)
a. 59 tons of pollutants
b. 74 tons of pollutants
C. $\quad 66.5$ tons of pollutants
d.) 66 tons of pollutants
35)
a. 85,500 entries
b. 59,000 entries
C. 112,000 entries
36) 136.5 meters

Answers will vary
37)
a. 192 meters
b. 390 meters
C. 432 meters
d. 456 meters
e. 432 meters
f. 432 meters

