AP Calculus-AB
Review: Limits, Continuity, \& R.O.C

Name
Day 12

1. The graph of f is given to the left.
A. Find each limit, or explain why it does not exist.
$\begin{array}{ll}\lim _{x \rightarrow 2^{+}} f(x) & \lim _{x \rightarrow-3^{+}} f(x) \\ \lim _{x \rightarrow-3} f(x) & \lim _{x \rightarrow 4} f(x) \\ \lim _{x \rightarrow 0} f(x) & \lim _{x \rightarrow 2^{-}} f(x) \\ \lim _{x \rightarrow \infty} f(x) & \lim _{x \rightarrow-\infty} f(x)\end{array}$
B. State the equations of the horizontal asymptotes.
C. State the equations of the vertical asymptotes.
D. At what numbers is f discontinuous? Explain.
2. Sketch the graph of an example of a function f that satisfies all of the following conditions;
$\lim _{x \rightarrow-\infty} f(x)=-2$
$\lim _{x \rightarrow \infty} f(x)=0$
$\lim _{x \rightarrow-3} f(x)=\infty$
$\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-3^{+}} f(x)=2$

Find the limit:
3. $\lim _{x \rightarrow 1} e^{x^{2}-x}$
4. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-3}$
5. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
6. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}$
7. $\lim _{h \rightarrow 0} \frac{(h-1)^{2}+1}{h}$
8. $\lim _{t \rightarrow 2} \frac{t^{2}-4}{t^{3}-8}$
9. $\lim _{R \rightarrow 9} \frac{\sqrt{R}}{(R-9)^{4}}$
10. $\lim _{x \rightarrow \infty} \frac{1-2 x^{2}-x^{4}}{5+x-3 x^{4}}$
11. $\lim _{w \rightarrow 0} \frac{\frac{1}{6+w}-\frac{1}{6}}{w}$
12. $\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{\theta}$
\qquad

Find the limit:
13. $\lim _{x \rightarrow-\infty} \frac{x-2}{\sqrt{3 x^{2}+1}}$
14. $\lim _{t \rightarrow \infty} \frac{x^{2}-6}{1+x}$
15. $\lim _{v \rightarrow 0^{+}} \frac{6-v^{2}}{v^{3}-v}$
16. $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x-3}{x^{3}+2 x^{2}}$
17. $\lim _{x \rightarrow \frac{\pi}{6}} \tan x$
18. $\lim _{x \rightarrow \frac{\pi^{+}}{2}} \tan x$
19. $\lim _{x \rightarrow 1} \cos \pi x$
20. $\lim _{x \rightarrow 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$

\boldsymbol{x}	-1.1	-1.003	-1.0001	-0.9999	-0.8762	-0.6522
$\boldsymbol{h}(\boldsymbol{x})$	-89	-677	-5009	-5.003	-5.088	-5.113
$\boldsymbol{p}(\boldsymbol{x})$	9.222	9.111	9.002	8.999	8.802	8.777
$\boldsymbol{r}(\boldsymbol{x})$	-99	-999	-9999	-8853	-871	-86

21.

$$
\begin{array}{ll}
\lim _{x \rightarrow-1^{+}} h(x)= & \lim _{x \rightarrow-1} p(x)= \\
\lim _{x \rightarrow-1^{-}} h(x)= & \lim _{x \rightarrow-1} r(x)=
\end{array}
$$

22. $f(x)=\left\{\begin{array}{ll|ll}\sqrt{-x} & \text { if } x<0 \\ 3-x & \text { if } 0 \leq x \leq 3 \\ (x-3)^{2} & \text { if } x>3 & \text { Evaluate each limit, if it exists. } \\ \text { A. } \lim _{x \rightarrow 0^{+}} f(x)= & \text { D. } \lim _{x \rightarrow 3^{+}} f(x)= \\ \text { B. } \lim _{x \rightarrow 0^{-}} f(x)= & \text { E. } \lim _{x \rightarrow 3^{-}} f(x)= \\ \text { C. } \lim _{x \rightarrow 0} f(x)= & \text { F. } \lim _{x \rightarrow 3} f(x)=\end{array}\right.$
G. Where is f discontinuous? Justify your answer.
H. Sketch $f(x)$

23. Use the Intermediate Value Theorem to show that there is a root of the equation $f(x)=x^{5}-x^{3}+3 x-5$ on the interval $(1,2)$.
\qquad
Review: Limits, Continuity, \& R.O.C
Sketch the graph of $f^{\prime}(x)$ directly onto the graph of $f(x)$.
24.

25.

26. The graph of f is shown. State, with reasons, the numbers at which f is not differentiable.

27. Let $T(t)$ be the temperature (in ${ }^{\circ} F$) in Phoenix thours after midnight on September 10, 2008. The table shows values of the function recorded every two hours.

t	0	2	4	6	8	10	12	14
T	82	75	74	75	84	90	93	94

What is the meaning of $\mathrm{T}^{\prime}(8)$? Estimate its value.
28. The cost of producing x ounces of gold from a new gold mine is $C=f(x)$ dollars.
a.) What is the meaning of the derivative $f^{\prime}(x)$? What are its units?
b.) What does the statement $f^{\prime}(800)=17$ mean?
c.) Do you think the values of $f^{\prime}(x)$ will increase or decrease in the short term? What about the long term? Explain.

Use the given table to approximate the expressions to the right.

x	-2	-1	0	1	2
$f(x)$	-4	0	2	9	10
$g(x)$	30	16	8	1	.5

29. $f^{\prime}(0)=$
30. $2 g^{\prime}(-1)+f^{\prime}(2)=$

AP Calculus-AB

Review: Limits, Continuity, \& R.O.C

Name
Day 12
31. If f is continuous on $[2,6]$, with $f(2)=20$ and $f(6)=10$, then the Intermediate Value Theorem says which of the following is true?
I. $f(x)=25$ does not have a solution on $[2,6]$.
II. $f(x)=17$ has a solution on $[2,6]$.
III. $f(x)=0$ has a solution on $[2,6]$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
33. $\lim _{x \rightarrow \infty} \frac{3 x+2}{\sqrt{x^{2}+4}}$ is
(A) $-\infty$
(B) -3
(C) 0
(D) 3
(E) ∞
35. $\lim _{h \rightarrow 25} \frac{\sqrt{h}-5}{h-25}$ is
(A) 0
(B) $\frac{1}{25}$
(C) $\frac{1}{10}$
(D) $\frac{1}{5}$
(E) nonexistent
37. Let $f(x)=\left\{\begin{array}{ll}x^{2}-9 \\ x-3 & x \neq 3 \\ 6, & x=3\end{array}\right.$.

Which of the following is true?
I. $\lim _{x \rightarrow 3} f(x)$
II. f is continuous
does not exist. at $x=3$.
III. The line $x=3$ is
a vertical asymptote
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
39. What is $\lim _{x \rightarrow \infty} \frac{x^{2}-6}{2+x-3 x^{2}}$
(A) -3
(B) $-\frac{1}{3}$
(C) $\frac{1}{3}$
(D) 2
(E) the limit does not exist
32. Using the table of values of $f(x)$, the average rate of change of f on the interval $[-2,4]$ is

x	-6	-4	-2	0	2	4	6
$f(x)$	9	3	1	5	8	15	31
(A) $\frac{1}{6}$							

(B) 1
(C) $\frac{3}{2}$
(D) $\frac{7}{3}$
(E) 12
34. $\lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x^{2}-1}=$
(A) -2
(B) -1
(C) 10
(D) 1
(E) 2
36. $\lim _{x \rightarrow 4-} \frac{x+6}{x^{2}-6 x+8}$ is
(A) 0
(B) $\frac{1}{24}$
(C) $\frac{3}{4}$
(D) ∞
(E) $-\infty$
38. What is $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) $\frac{3}{2}$
(E) nonexistent
\qquad
nenter

