$$
\begin{array}{ll}
\int \text { velocity } \frac{\text { miles }}{\text { hour }}= \\
\int \text { acceleration } \frac{\text { meters }}{\text { second }{ }^{2}}=\square \quad \int \frac{\text { dollars }}{\text { chips }}= \\
\text { minute } & \quad \int \frac{\text { gallons }}{\text { hour }}=
\end{array}
$$

Example 1: At 7am, water begins leaking from a tank at a rate of leaking $=2 t+.25 t$ gallons per hour (t is the number of hours after 7 am). How much water is lost between 9 am and 11 am ?

Example 2: The number of cars per hour passing an observation point along a highway is called the rate of traffic flow $q(t)$ in cars per hour.
A. What is $\int_{t_{1}}^{t_{2}} q(t) \mathrm{dt}=$
B. The flow rate is recorded at 15-minute intervals between 7:00am and 9: 00 am . Estimate the number of cars using the highway during this $2-$ hour period by taking the average of the left and right endpoint approximations.

t	$7: 00$	$7: 15$	$7: 30$	$7: 45$	$8: 00$	$8: 15$	$8: 30$	$8: 45$	$9: 00$
$q(t)$	1,044	1,297	1,478	1,844	1,451	1,378	1,155	802	542

Displacement
VS
Distance

Displacement vs Total Distance:

Displacement: How far from home (includes pos/neg) from where you started.

$$
\text { Displacement }=\int_{t_{1}}^{t_{2}} v(t) d t=\int_{t_{1}}^{t_{2}} \frac{\text { measure of length }}{\text { measure of time }} d t=\text { measure of length }
$$

Total Distance: How far you have traveled.
Total Distance $=\int_{t_{1}}^{t_{2}}|v(t)| d t=\int_{t_{1}}^{t_{2}}\left|\frac{\text { measure of length }}{\text { measure of time }}\right| d t=$ measure of length

Example 3: $v(t)$ is the velocity function of your distance from Hillgrove High School.
A. How far are you from the the Grove after 3 mins.
B. How far have you traveled after 3 mins.
C. How far are you from the the Grove after 5 mins.
D. How far have you traveled
 after 5 mins.
E. How far are you from the the Grove after 13 mins.
F. How far have you traveled after 13 mins.

Example 4: Assume a particle moves along a straight line with given velocity. Find the total displacement and total distance over the time interval.
A. $f(x)=x^{2}-2 x-4[-5,5]$
B. $v(x)=x^{2}-x-6[-10,10]$

