We can approximate area by making rectangles. We can use right endpoints, left endpoints, or midpoints of these rectangles.

Example 1: Estimate the area under the curve. (Some answers may differ if you are given a picture and asked for an estimate.)
A. R_{4}
B. L_{8}
C. M_{4}

Example 2: Estimate the area given the table. (These answers may not be different) Compute $R_{6}, L_{6}, \& M_{3}$ to estimate the distance traveled over the $[0,3]$ if the velocity at half second intervals is as follows.

$\dagger(\mathrm{s})$	0	.5	1	1.5	2	2.5	3
$\mathrm{v}(\mathrm{ft} . / \mathrm{s})$	0	5	15	20	15	10	5

A. R_{6}
B. L_{6}
C. M_{3}

Example 3: Estimate the area given the function. (These answers may not be different) Let $f(x)=-x^{2}+4,[0,2]$
A. R_{4}
B. L_{4}
C. M_{2}

Example 4: Estimate the area given the function. (These answers may not be different) Let $f(x)=\ln x,[1,2]$
M_{6}

Example 4: Estimate the area given the function. (These answers may not be different) Let $f(x)=\sin x,[0, \pi]$
R_{4}

