Notes: Approximating The Area Under a Curve:

We can approximate area by making rectangles. We can use right endpoints, left endpoints, or midpoints of these rectangles.

Example 1: Estimate the area under the curve . (Some answers may differ if you are given a picture and asked for an estimate.)

Example 2: Estimate the area given the table. (These answers may not be different) Compute R_6 , L_6 , & M_3 to estimate the distance traveled over the [0,3] if the velocity at half second intervals is as follows.

†(s)	0	.5	1	1.5	2	2.5	3
∨(ft./s)	0	5	15	20	15	10	5

A. R_6

B. *L*₆

C. *M*₃

Example 3: Estimate the area given the function. (These answers may not be different) Let $f(x) = -x^2 + 4$, [0, 2]

Example 4: Estimate the area given the function. (These answers may not be different) Let $f(x) = \ln x$, [1, 2]

 M_{6}

Example 4: Estimate the area given the function. (These answers may not be different) Let $f(x) = \sin x$, $[0, \pi]$

 R_4

