Notes: Alternating Series, Absolute Convergence, & Conditional Convergence Infinite Series Day 8 <u>Alternating Series Test:</u> The alternating series

 $\sum (-1)^n a_n$, where a_n is a sequence with all positive terms,

Converges: If a_n is decreasing and $\lim_{n \to \infty} a_n = 0$

What does the Alternating Series test not tell us?

Determine whether the following series are convergent or divergent. Justify your answer.

Example One:

 $\sum_{n=3}^{\infty} \frac{(-1)^{n+1} n^2}{n^3 + 1}$

Check for Geometric Series Check for p-series Try the Divergence Test No! Check for All Positive Terms Try the Alternating Try the Series Test Comparison Test Try the Absolute Try the Limit Convergence Test Comparison Test Try the Try the Integral Test Ratio Test

Example Two:

 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n^2}{n^3 + 4}$

Example Three:

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n \ln(n)}$$