\qquad Seat \# \qquad

Please start off every review with reading your notecards for that unit several times!!!!! This is a very limited review!!!!
You should be able to look at a graph of $f(x)$ and $f^{\prime}(x)$ and completely fill out a sign chart.

If you have $f(x)$ fill out $f(x)$ on sign line first.

Critical Number- $f^{\prime}(x)=0$ or $f^{\prime}(x)=$ undefined Max- $f^{\prime}(x)$ changes from pos to neg Min- $f^{\prime}(x)$ changes from neg to pos Increasing- $f^{\prime}(x)>0$ Decreasing $-f^{\prime}(x)<0$ Point of Inflection- $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ or $f^{\prime \prime}(x)=$ undefined and $f^{\prime \prime}(x)$ changes signs Concave up-f" $(x)>0$ Concave down-f" $(x)<0$

- Justify Max/Min First derivative test- $\mathrm{f}^{\prime}(\mathrm{x})$ changes sign Second derivative test$f^{\prime}(x)=0 / u d \& f^{\prime \prime}(x)>0=m i n$ $f^{\prime \prime}(x)<0=m a x$

Intermediate Value Thm.- If $f(x)$ is continuous and you know $2 y$-values Then $f(x)$ goes through all the y-values in-between.	The idea behind the Intermediate Value Theorem is this: When we have two points connected by a continuous curve: - one point below the line - the other point above the line .. then there will be at least one place where the curve crosses the line!
Mean Value Thm. - If $f(x)$ is continuous and differentiable Then the average rate of change=the instant rate of change	
Rolle's Thm.-If $f(x)$ is continuous and differentiable and $f(a)=f(b)$ Then somewhere on (a, b) $f^{\prime}(x)=0($ max or $\min) ~ a t$ least 1 time.	

Name Pd.
Date \qquad Seat \# \qquad

Curve Sketching \& Theorems: Review

1. Find the critical numbers of $f(x)=x^{3}-12 x^{2}$.
a.) $0 \& 8$
b.) $3 \& 8$
c.) $-8,0, \& 3$
d.) 1
2. Given that $f(x)=-x^{2}+12 x-28$ has a relative maximum at $x=6$, choose the correct statement.
a.) f^{\prime} is negative on the interval $(-\infty, 6)$
b.) f^{\prime} is negative on the interval $(-\infty, \infty)$
c.) f^{\prime} is negative on the interval $(6, \infty)$
d.) f^{\prime} is negative for all real values
3. Over which interval (s) is $f(x)=\frac{x^{2}}{x^{2}+4}$ increasing?
a.) $(0, \infty)$
b.) $(-\infty, 0)$
c.) $(-\infty, \infty)$
d.) $(-\infty, 0) \&(2, \infty)$
4. At which of the five points shown on the graph of $f(x)$ are the graphs of $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ both positive?
a.) A
b.) B
c.) D
d.) E

5. If $f(x)=x^{3}-3 x^{2}-x+7$, determine its point of inflection.
a.) $(1,4)$
b.) $(2,1)$
c.) $(3,4)$
d.) $(-1,4)$
6. Let f be defined by $f(x)=x^{2}(x-3)$ for all real numbers x. For what values of x is the function increasing?
a.) $0<x<2$
b.) $0<x<3$
c.) $x>0$
d.) $x<0 \& x>2$
7. Let f " $(x)=3 x^{2}-4$ and let $f(x)$ have critical numbers $-2,0, \& 2$. Use the $2^{\text {nd }}$ derivative test to determine which critical numbers, if any, gives a relative maximum.
a.) -2
b.) 2
c.) 0
d.) $-2,0, \& 2$
8. The Mean Value Theorem does not apply to $f(x)=|x-3|$ on $[1,4]$ because
a.) $f(x)$ is not continuous on [1, 4]
b.) (x) is not differentiable on $(1,4)$
c.) $f(1) \neq f(4)$
d.) $f(1)>f(4)$
e.) None of these
9. The function F below satisfies the conclusion of Rolle's Theorem in the interval $[a, b]$ because
a.) F is continuous on [a, b]
b.) F is differentiable on (a, b)
c.) $F(a)=F(b)=0$
d.) All three statements A, B and C
e.) None of these

Name \qquad Pd. \qquad

Curve Sketching \& Theorems: Review
10. The graph of f^{\prime}, the derivative of f, is shown in the figure for $-2 \leq x \leq 5$. On which intervals is f increasing?
a.) $[-2,1]$
b.) $[-2,3]$
c.) $[3,5]$
d.) $[0,1.5] \&[3,5]$

e.) $[-2,-1],[1,2], \&[4,5]$

Date \qquad Seat \# \qquad
11. If f is continuous for $a \leq x \leq b$ and differentiable for $a<x<b$, which of the following could be false?
a.)
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for some c
such that $a<c<b$
b.) $f^{\prime}(c)=0$ for some c, such that $a<c<b$
c.) f has a minimum value on $a \leq c \leq b$
d.) f has a maximum value on $a \leq c \leq b$
e.) $\int_{a}^{b} f(x) d x$ exists
12. The graph of the derivative of a function f is shown in the figure. At which of the following values of x does f have a relative maximum?
a.) -2
b.) 1
c.) 4
d.) $-1 \& 3$
e.) $-2,1, \& 4$

a.) f is decreasing for $-1 \leq x \leq 1$.
b.) f is increasing for $-2 \leq x \leq 0$.
c.) f is increasing for $1 \leq x \leq 2$.
d.) f has a local minimum at $x=0$.
e.) f is not differentiable at $x=-1 \& x=1$
13. The graph of f^{\prime}, the derivative of the function f, is shown in the figure. Which of the following statements is
true about f?
14. The function f has the property that $f(x), f^{\prime}(x), \& f^{\prime \prime}(x)$ are negative for all real values x. Which of the following could be the graph of f?
a.)

d.)

b.)

e.)

c.)

15. The function f defined by $f(x)=4 x^{2}-5 x+1$. The application of the Mean Value Theorem to f on the interval $0<x<2$ guarantees the existence of a value c, where $0<c<2$ such that $f^{\prime}(c)=$
a.) 1
b.) 3
C.) 7
d.) 8
\qquad
Curve Sketching \& Theorems: Review \qquad Seat \# \qquad

Calculators may be used on this section:

16. Let f be the function with derivative given by $f^{\prime}(x)=\sin \left(x^{2}+1\right)$. How many relative extrema does f have on the interval $2<x<4$?
a.) one
b.) two
c.) three
d.) four
e.) five
17. The function f has first derivative given by $f^{\prime}(x)=\frac{\sqrt{x}}{1+x+x^{3}}$. What is the x-coordinate of the inflection point of the graph of f ?
a.) 1.008
b.) 0.473
c.) 0
d.) -0.278
e.) none
18.

The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions
f, g, or h have a relative maximum on the open interval $a<x<b$?
a.) f
b.) g
c.) h
d.) f \& g
e.) $f, g, \& h$
19. Let f be the function given by
$f(x)=\cos (2 x)+\ln (3 x)$. What is the least value
of x
at which the graph of f changes concavity?
a.) 0.56
b.) 0.93
c.) 1.18
d.) 2.38
e.) 2.44
21. The graph of the function
$y=x^{3}+6 x^{2}+7 x-2 \cos x$ changes concavity at $\mathrm{x}=$
a.) -1.58
b.) -163
c.) -1.67
d.) -1.89
e.) -2.33
20. If the derivative of f is given by $f^{\prime}(x)=e^{x}-3 x^{2}$, at which of the following values of x does f have a relative maximum value?
a.) -0.46
b.) 0.20
c.) 0.91
d.) 0.95
e.) 3.73
22. What are all the values of x for which the function f defined by $f(x)=x^{3}+3 x^{2}-9 x+7$ is increasing?
a.) $-3<x<1$
b.) $-1<x<1$
c.) $x<-3 \& x>1$
d.) $x<-1 \& x>3$
e.) All real numbers

