Name	Pd.
Date	Seat #

Please start off every review with reading your notecards for that unit several times!!!!! This is a very limited review!!!!

You should be able to look at a graph of f(x) and f'(x) and completely fill out a sign chart.

BC Calculus Curve Sketching & Theorems: Review 1. Find the critical numbers of $f(x) = x^3 - 12x^2$. a.) 0 & 8 b.) 3 & 8 c.) -8,0,&3 d.) 1	NamePd DateSeat # 2. Given that $f(x) = -x^2 + 12x - 28$ has a relative maximum at x=6, choose the correct statement. a.) f' is negative on the interval $(-\infty, 6)$ b.) f' is negative on the interval $(-\infty, \infty)$ c.) f' is negative on the interval $(6, \infty)$ d.) f' is negative for all real values
3. Over which interval(s) is $f(x) = \frac{x^2}{x^2 + 4}$ increasing? a.) $(0,\infty)$ b.) $(-\infty,0)$ c.) $(-\infty,\infty)$ d.) $(-\infty,0)$ & $(2,\infty)$	4. At which of the five points shown on the graph of f(x) are the graphs of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ both positive? a.) A b.) B c.) D d.) E
5. If $f(x) = x^3 - 3x^2 - x + 7$, determine its point of inflection. a.) (1,4) b.) (2,1) c.) (3,4) d.) (-1,4)	6. Let f be defined by $f(x) = x^2(x-3)$ for all real numbers x. For what values of x is the function increasing? a.) $0 < x < 2$ b.) $0 < x < 3$ c.) $x > 0$ d.) $x < 0 & x > 2$
7. Let $f''(x) = 3x^2 - 4$ and let $f(x)$ have critical numbers -2,0,&2. Use the 2 nd derivative test to determine which critical numbers, if any, gives a relative maximum. a.) -2 b.) 2 c.) 0 d.) -2,0,&2	8. The Mean Value Theorem does not apply to f(x) = x - 3 on [1, 4] because a.) $f(x)$ is not continuous on [1, 4] b.) (x) is not differentiable on (1, 4) c.) $f(1) \neq f(4)$ d.) $f(1) > f(4)$ e.) None of these

9. The function F below satisfies the conclusion of Rolle's Theorem in the interval [a, b] because

- a.) F is continuous on [a, b]
- b.) F is differentiable on (a, b)
- c.) F(a) = F(b) = 0
- d.) All three statements A, B and C
- e.) None of these

15. The function f defined by $f(x) = 4x^2 - 5x + 1$. The application of the Mean Value Theorem to f on the interval 0 < x < 2 guarantees the existence of a value c, where 0 < c < 2 such that f'(c)= a.) 1 b.) 3 c.) 7 d.) 8

BC Calculus	Name	Pd
Curve Sketching & Theorems: Review	Date	Seat #
Calculators may be used on this section:		
16. Let f be the function with derivative given	17. The function f has first der	ivative given by
by $f'(x) = sin(x^2 + 1)$. How many relative	$f'(x) = \frac{\sqrt{x}}{1 + x + x^3}$. What is the x-	-coordinate of the
2×10^{-1}	inflection point of the graph of	of f?
a.) one b.) two c.) three d.) four e.) five	a.) 1.008 b.) 0.473 c.) 0 d.) -0.278 e.) none	

18.

The graphs of the derivatives of the functions f, g, and h are shown above. Which of the functions f, g, or h have a relative maximum on the open interval a < x < b?

- a.) f
- b.) g
- c.) h
- d.) f&g e.) f.a.&h

e.j i, g, a li	
19. Let f be the function given by	20. If the derivative of f is given by $f'(x) = e^x - 3x^2$,
$f(x) = \cos(2x) + \ln(3x)$. What is the least value	at which of the following values of x does f have a
of x	relative maximum value?
at which the graph of f changes concavity?	a.) -0.46
a.) 0.56	b.) 0.20
b.) 0.93	c.) 0.91
c.) 1.18	d.) 0.95
d.) 2.38	e.) 3.73
e.) 2.44	
21. The graph of the function	22. What are all the values of x for which the
$y = x^3 + 6x^2 + 7x - 2\cos x$ changes concavity at	function f defined by $f(x) = x^3 + 3x^2 - 9x + 7$ is
x=	increasing?
a.) -1.58	a.) $-3 < x < 1$
b.) -163	b.) $-1 < x < 1$
c.) -1.67	C.) $x < -3 \& x > 1$
d.) -1.89	d.) $x < -1 \& x > 3$
e.) -2.33	e.) All real numbers