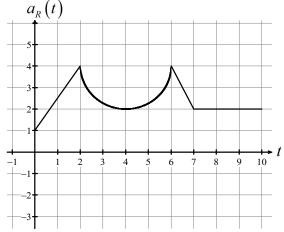
<u>Review Test #1 – 2020</u>

t	0	3	5	6	7	10
$v_{Q}(t)$	10	7	4	3	2	1

1. The table above gives selected values of the function v_Q which represents the velocity of particle Q traveling along a horizontal line, for times on the interval $0 \le t \le 10$. Let $x_Q(t)$ and $a_Q(t)$ denote the position and acceleration of particle Q at time t, respectively. It is known that $x_Q(0) = 9$ and that $a_Q(t) < 0$ on $0 \le t \le 10$.

Particle *R* travels along the same horizontal line as particle *Q*, and its acceleration a_R is given by the graph shown at right on the interval $0 \le t \le 10$. The portion of the graph of $y = a_R(t)$ on the interval $2 \le t \le 6$ is a semicircle, and all other portions of the graph are piecewise-linear. Let $x_R(t)$ and $v_R(t)$ denote the position and acceleration of particle *R* at time *t*, respectively. It is known that $x_R(7) = 20$ and $v_R(7) = 4$.



- (a) How much greater is the average acceleration of particle *R* than the average acceleration of particle *Q* on the interval $0 \le t \le 6$?
- (b) Find the value of $v_R(0)$.
- (c) Approximate the value of $x_Q(10)$ using a left Riemann sum with five subintervals indicated by the data in the table for v_Q . Is this approximation less than or greater than the true value of $x_Q(10)$? Explain your answer.
- (d) Is it true that particle Q meets particle R at some time on the interval $7 \le t \le 10$? Explain your answer.

2. Some values of the function f whose derivatives of all orders exist are shown in the table below, along with some known values of f', f'', f''', and $f^{(4)}(x)$ as well. Let g(x) = xf'(x).

x	0	1	2
f(x)	4	3	5
f'(x)	2	6	3
f''(x)	12	8	1
f'''(x)	6	0	4
$f^{(4)}(x)$	48	8	2

- (a) Find the value of $\lim_{x \to 1} \frac{f(x) 6x + 3}{3f'(2x) 3\cos(2x 2) 6x}.$
- (b) Write the equation of the tangent line to g(x) at x = 2 and use it to approximate a solution to the equation g(x) = 26.
- (c) Write the third-degree Taylor polynomial centered at x = 0 for g(x), and use it to approximate the value of $\int_0^2 g(x) dx$.
- (d) It is known that $\int_{3}^{0} 2f(x) dx = 38$ and $\int_{2}^{3} f(x) dx = 8$. Find the exact value of $\int_{0}^{2} g(x) dx$.