t	0	25	30	45	65	80
$W(t)$	2	10	13	30	60	81

BC1: Workers at a local office building are expected to be at work by 9AM $(t=60)$ each day.
Let the twice differentiable function $y=W(t)$ be the amount of workers in the building at time t, in minutes, satisfying the logistic differential equation $\frac{d y}{d t}=\frac{1}{15} y\left(1-\frac{y}{100}\right)$
where $W(0)=2$. Selected values of $W(t)$ are given in the table where $t=0$ is 8 AM .
(a) Find $W^{\prime}(65)$ and $W^{\prime \prime}(65)$. Using correct units, interpret the meaning of $W^{\prime \prime}$ (65) in context of this problem.
(b) Evaluate $\int_{0}^{\infty} W^{\prime}(3 t+25) d t$. Show the work that leads to your answer.
(c) Use a left Riemann sum with three subintervals indicated by the data in the table to approximate the value of $\frac{1}{45} \int_{0}^{45} W(t) d t$. Using correct units, explain the meaning of $\frac{1}{45} \int_{0}^{45} W(t) d t$ in the context of the problem.

t	0	25	30	45	65	80
$W(t)$	2	10	13	30	60	81

BC1: Workers at a local office building are expected to be at work by 9AM $(t=60)$ each day. Let the twice differentiable function $y=W(t)$ be the amount of workers in the building at time t, in minutes, satisfying the logistic differential equation $\frac{d y}{d t}=\frac{1}{15} y\left(1-\frac{y}{100}\right)$ where $W(0)=2$. Selected values of $W(t)$ are given inthe table where $t=0$ is 8 AM .
(d) Use Euler's method with two steps of equal size starting at $t=45$ minutes to approximate the number of workers inside the office building by 9: 25AM ($t=85$ minutes).
(e) Is there a time c, such that $25<c<45$, when $W^{\prime}(c)=1$. Justify your answer.
(f) Let $P_{2}(t)$ be the second degree Taylor polynomial for $W(t)$ centered at $t=65$. Find $P_{2}(t)$ and use it to approximate the number of workers inside the office building at 9 : $25 \mathrm{AM}(t=85)$.

BC2: The function f is twice differentiable for $x \geq-6$. A portion of the graph of f is given in the figure above. The areas formed by the bounded regions between the graph of f and the x axis are labeled in the figure. Let the twice differentiable function g be defined by $g(x)=\int_{2}^{x} f(t) d t$.
(a) Find $\lim _{x \rightarrow-2} \frac{g(2 x)-4 x}{e^{x^{2}-4}+x-1}$.
(b) Find the absolute maximum of g on the interval $[-6,2]$. Justify your answer.
(c) Evaluate $\int_{-3}^{1} x f^{\prime}(2 x) d x$.
(d) The region R is the base of a solid whose cross sections perpedicular to the x axis are squares. Write, but do not evaluate, an integral expression that gives the volume of the solid.
(e) For $x \geq 5$, the function f is not explicitly given, but $f^{\prime}(x)=-4\left(\frac{1}{2}\right)^{x-5}$. If $a_{n}=f^{\prime}(n)$, find $\sum_{n=5}^{\infty} a_{n}$ or show that the series diverges.

