Example 1-2: Verify that the given function is a solution of the differential equation.
Example 1: $y^{\prime}+8 y=0, y=4 e^{-8 x}$ Now you try: Example 2: $y^{\prime}+4 x y=0, y=3 e^{-2 x^{2}}$

Steps to solving a differential equation:

1. Rewrite y^{\prime} as $\frac{d y}{d x}$.
2. Move $d y$ and all y terms to the left side of the equation.
3. Move $d x$ and all x terms to the right side of the equation.
4. Integrate both sides.
5. Solve for y.

- If general solution then you are done.
- If particular solution then plug in the given information to solve for c. (Rewrite equation with the C value you found.)
Example 3: Find the general solution: $y^{\prime}=\frac{1}{2} x y$

Find the general solution:
Example 4: $\left(1+x^{2}\right) y^{\prime}=x^{3} y$ Example 5: $\frac{d x}{d t}=t \tan x$

Find the particular solution for the differential equation:

Example 6:
$\frac{d y}{d t}=t e^{-y}, \quad y(1)=0$

Example 7:
$\sqrt{1-x^{2}} y^{\prime}=y^{2}+1, \quad y(0)=0$

Example 8:
$y^{\prime}=\tan y, \quad y(\ln 2)=\frac{\pi}{2}$

