

AP Calculus Notes/Classwork: Volume of Cross Sections Name

Partner

Base: $y = -\frac{1}{3}x + 4$ $y - axis \quad (x = 0)$ $x - axis \quad (y = 0)$

> 1. Perpendicular to x - axisCross Sections Squares

Day 3 & 4 App Integration

- 2. Perpendicular to y-axisCross Sections Isosceles Right Triangles with leg on base.
- 3. Perpendicular to x-axisCross Sections Equilateral Triangles
- 4. Perpendicular to *y*-*axis* Cross Sections Semi-Circles

5. Perpendicular to *x*-axis Cross Sections Squares 6. Perpendicular to y-axisCross Sections Isosceles Right Triangles with leg on base.

- Perpendicular to x-axis
 Cross Sections Equilateral Triangles
- 8. Perpendicular to *y*-*axis* Cross Sections Semi-Circles

AP Calculus Notes/Classwork: Volume of Cross Sections

Name_____ Partner_____Day 3 & 4 App Integration

Base:
$$y = 4\sin\left(\frac{1}{2}x\right)$$

$$y = x^2 - 6x$$

 Perpendicular to x-axis Cross Sections Squares

						_	
_		_		_			
_							
_							\square
_		_					
_							
-							\square

10. Perpendicular to x-axisCross Sections Isosceles Right Triangles with leg on base

- Perpendicular to x-axis
 Cross Sections Equilateral Triangles
- 12. Perpendicular to *x*-*axis* Cross Sections Semi-Circles

13. Let f and g be the functions defined by $f(x) = 1 + x + e^{x^2 - 2x}$ and $g(x) = x^4 - 6.5x^2 + 6x + 2$ let R and S be the two regions enclosed by the graphs of f and g shown in the figure to the right.

Region S is the base of a solid whose cross sections perpendicular to the xaxis are squares. Find the volume of the solid.

14. Let $f(x) = 2x^2 - 6x + 4$ and $g(x) = 4\cos\left(\frac{1}{4}\pi x\right)$. Let *R*

be the region bounded by the graphs of f and g, as shown in the figure.

The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid. **AP Calculus**

Notes/Classwork: Volume of Cross Sections

Name Partner

Day 3 & 4 App Integration

15. Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 - x, as shown in the figure to the right.

Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression involving one or more integrals that gives the volume of the solid.

16. Let R be the region in the first auadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the yaxis, as shown in the figure to the right.

Region R is the base of a solid. For each y, where $0 \le y \le 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.

17. Let \Re be the region in the first quadrant enclosed by the graphs of y = 2x and $y = x^2$, as shown in the figure to the right.

Find the region $\mathfrak R$ is the base of a solid, at each x the cross section perpendicular to the x - axis has

area $A(x) = \sin\left(\frac{\pi}{2}x\right)$. Find the volume of the solid.

18. The base of a solid is the region enclosed by y = sinx and the x-axis on the interval $[0,\pi]$. Cross sections perpendicular to the x-axis are semicircles with diameter in the plane of the base. Write an integral that represents the volume of the solid.

(A)
$$\frac{\pi}{8}\int_0^{\pi} (\sin x)^2 dx$$

(B)
$$\frac{\pi}{8}\int_0^1 (\sin x)^2 dx$$

(C) $\frac{\pi}{4} \int_0^{\pi} \sin x \, dx$

(D)
$$\frac{\pi}{8}\int_0^{\pi} (\sin x)^2 dx$$

$$\frac{\pi}{2}\int_0^{\pi} (\sin x)^2 dx$$

(

19. The base of a solid is a region in the first quadrant bounded by the x - axis, y - axis, and the linex + 2y = 8, as shown in the figure. If the cross sections of the solid perpendicular to the x –axis are semicircles. solid? what is the volume of the 12.566 (C) 14.661

(B) 16.755 (C)

solid?

(A)

- (D) 67.021
- 134.041 (E)

20. The base of a solid is the region in the first quadrant bounded by the y –axis, the graph of $y = tan^{-1}x$, the horizontal line y = 3, and the vertical line x = 1. For this solid, each cross section perpendicular to the x - axisis a square. What is the volume of the

- (A) 2.561
- (B) 6.612
 - 8.046
- (D) 8.755
- (E) 20.773