Name	Pd
Date	Seat #

Please start off every review with reading your notecards for that unit several times!!!!! This is a very limited review!!!!

<u>Related Rates</u> - Find the rate of change of We also called these Know Find When	Optimization-Find the max/min, largest/smallest, farthest/closest or any other synonym for	
Identify- Know, Find, & When from problem	max/min.	
Draw a picture and label all parts. Unless it is a	Take a derivative, set equal to zero, and solve.	
formula problem.	You must check the endpoints.	
Know & Find: You will be given & asked to find		
$\frac{d(\text{something})}{dt} \text{ ex: rate of change of radius} = \frac{dr}{dt}$	Absolute Extrema- Different than relative because relative happen when f(x) change	
When : Is normally a length it could be a time Ex: when radius is 10	from increasing to decreasing or decreasing to increasing. Absolute you have to find the y-	
Equation: You will be given or you will need to	values and check the endpoints. The largest or	
come up with an equation that relates Know & Find.	smallest y-value is the absolute extrema	
Derivative : always take a derivative with	LHopital's Rule- If you are finding the limit of a	
respect to time. $\frac{d}{dt}$ [Equation]	$\frac{0}{2}$ or $\frac{\infty}{2}$ or $\infty - \infty$ or 0^{0}	
Substitute: Know & When and solve for Find.	$0 \propto$	
	bottom separately and try direct substitution	
Key:	again	
I-C 2-A 3-A 4-C 5-C		
6-В /-С 8-В 9-В 10-А		
Practice:		
I.A 20-foot ladder leans against the wall of a	2. A spherical balloon is filled with air at 8	
so the top of the ladder moves down at the rate	in^{3} /sec. How fast is the diameter of the balloon	
of 5 ft/sec. How fast is the foot of the ladder	increasing when the volume of the balloon is	
moving away from the wall when the foot of the	36 π in? (volume of a sphere = V = $\frac{4}{3}\pi r^3$)	
ladder is 12 feet from the wall?		
a.) <u>1 ft</u>	a.) $\frac{4}{9\pi}\frac{in}{soc}$	
a.) $\frac{1}{2} \frac{ft}{sec}$	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b) 2 in	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{2} \frac{ft}{ft}$	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$ c.) $2 in$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$ c.) $\frac{2}{3} \frac{ft}{sec}$	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$ c.) $\frac{2}{9\pi} \frac{in}{sec}$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$ c.) $\frac{2}{3} \frac{ft}{sec}$ d.) 4 ft	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$ c.) $\frac{2}{9\pi} \frac{in}{sec}$ d.) $\frac{8}{3\pi} \frac{in}{sec}$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$ c.) $\frac{2}{3} \frac{ft}{sec}$ d.) $\frac{4}{3} \frac{ft}{sec}$	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$ c.) $\frac{2}{9\pi} \frac{in}{sec}$ d.) $\frac{8}{27\pi} \frac{in}{sec}$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$ c.) $\frac{2}{3} \frac{ft}{sec}$ d.) $\frac{4}{3} \frac{ft}{sec}$ e.) 8 ft	a.) $\frac{4}{9\pi} \frac{in}{sec}$ b.) $\frac{2}{3\pi} \frac{in}{sec}$ c.) $\frac{2}{9\pi} \frac{in}{sec}$ d.) $\frac{8}{27\pi} \frac{in}{sec}$ e.) $\frac{2}{2\pi} \frac{in}{sec}$	
a.) $\frac{1}{2} \frac{ft}{sec}$ b.) $\frac{5}{8} \frac{ft}{sec}$ c.) $\frac{2}{3} \frac{ft}{sec}$ d.) $\frac{4}{3} \frac{ft}{sec}$ e.) $\frac{8}{3} \frac{ft}{sec}$	a.) $\frac{4}{9\pi} \frac{in}{\sec}$ b.) $\frac{2}{3\pi} \frac{in}{\sec}$ c.) $\frac{2}{9\pi} \frac{in}{\sec}$ d.) $\frac{8}{27\pi} \frac{in}{\sec}$ e.) $\frac{2}{27\pi} \frac{in}{\sec}$	

BC Co	alculus	Name	Pd
Applic	cation of Derivative: Review	Date	_Seat #
3. The	e profit function for a manufacturer of	4. $g(x) = -x^2 + 1 lx - 30$, $5 \le x \le 6$	
apple	e watches is approximately $0.02v^2 + 220v = 100.000$, where v denotes	a.) Absolute max is $\frac{5}{2}$ at $x = \frac{13}{8}$	
P(X) =	$=-0.02x^{-}+320x-100,000$, where x denotes		
maxi	mum profit?	Absolute min is 0 of $x = 5 \& 6$	
-		b.) Absolute max is $\frac{241}{4}$ at $x = \frac{11}{2}$ &	
a.)	\$1,180,000	Absolute min is 0 at $x = 5 \& 6$	
D.)	\$1,280,000 \$1,380,000	C.) Absolute may is $1 \text{ at } x = \frac{11}{8}$	
d.)	\$1,480,000	Absolute makis $\frac{1}{4}$ dr $\chi = \frac{1}{2}$	
0.17	Ŷ, 100,000	Absolute min is 0 at $x = 5 \& 6$	
		d.) Absolute max is $\frac{1}{4}$ at $x = \frac{13}{2}$ &	
		Absolute min is 0 at $x = 5 \& 6$	
5. Lo	cate the absolute extrema of the function	6. If $y = 2x - 8$, what is the minimum va	llue of the
f(x) =	$x^3 - 12x$ on the closed interval $[0, 4]$.	product xy ?	
a.)	Absolute max: (2,-16);	a.) -16	
	Absolute min: (4,16)	D.) -8	
b.)	Absolute max: none;	d.) 0	
	Absolute min: (4,16)	e.) 2	
с.)	Absolute max: (4,16);		
	Absolute min: (2,-16)		
d.)	Absolute max: (4,16);		
	Absolute min: none		
j	-9(x - 10)	o 1-cos(9x)	
$/. \lim_{x \to x \to x}$	$n \frac{1}{x^2 - 100} =$	8. $\lim_{x \to 0} \frac{1}{6x^2} =$	
a.)	9	a.) <u>3</u>	
ы	20	2 b) 27	
D.J	$-\frac{7}{100}$	$\frac{2}{4}$	
c.)	9	c.) 0	
	$-\frac{1}{20}$	d.) <u>3</u>	
d.)	0 Does not exist	4	
9. A	sphere is increasing in volume at the rate of	10. We need to enclose a field with fer	nce. We
3π с	m^3 / s. At what rate is the radius changing	have 500 feet of fencing material and	a building
wher	n the radius is 1/2 cm	is on one side of the field and so won't	need
volu	ume of a sphere = $V = \frac{4}{2}\pi r^3$	field that will enclose the largest area.	is of the
		a.) 250 by 125	
u.)	<i>ⁿ</i> 0.j 5 C.j 2 G.j I e.j 1/2	b.) 150 by 200	
		C.J 125 DY 100 d λ 200 by 150	