No calculators

Use the differential equation $\frac{d y}{d x}=\frac{y^{2}}{x^{3}}$

1. On the graph shown at the right, sketch a slope field for the differential equation at the indicated points.

2. Solve the differential equation given the initial condition $y(1)=2$
3. Use Euler's Method to approximate $y(1.5)$ given $y(1)=2$ and $\Delta x=0.1$. Be sure to include your calculations in a table.

Use the differential equation $\frac{d y}{d x}=2 x y$ to answer the following.
4. On the graph shown at the right, sketch a slope field for the differential equation at the indicated points.

5. Use Euler's Method to approximate $y(1)$ given $y(0)=1$ and $\Delta x=0.5$. Be sure to include your calculations in a table.
6. Find the exact value for $y(1)$ given $y(0)=1$.
7. Suppose $\frac{d P}{d t}=0.36 P\left(1-\frac{P}{1200}\right)$ and $P(0)=200$. Find $P(t)$.
8. Solve the differential equation $\frac{d y}{d x}=3 y(y-1)$ if $y(0)=1 / 4$.
9. The growth rate of a population P of bears in a newly established wildlife preserve is modeled by the differential equation $\frac{d P}{d t}=0.008 P(100-P)$, where t is measure in years.
a.) What is the carrying capacity for bears in this wildlife preserve?
b.) Find an equation for the population of bears.
10. A 2000-gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank. Assume that the rate of growth of the population is $\frac{d P}{d t}=0.0015 P(150-P)$ where time is in weeks.
a.) Find a formula for the guppy population in terms of t.
b.) How long will it take the guppy population to be 100 ? 125 ?
11. $\int x^{2} \ln x d x$
12. $\int x \sin (2 x) d x$
13. $\int x \sec ^{2} x d x$
14. $\int \frac{x+4}{(x-1)(x+6)} d x$
15. $\int \frac{2 x-1}{(x-1)^{2}} d x$
16. $\int \frac{1}{x^{3}+x^{2}-2 x} d x$
\qquad
Day 6
17. $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$
18. $\int_{1}^{\infty} \frac{2 d x}{x^{3}}$
19. $\int_{0}^{1} \frac{d x}{(x-1)^{2 / 3}}$
20. $\int \sin ^{4} x d x$
21. $\int_{\pi / 2}^{3 \pi / 4} \sin ^{5} x \cos ^{2} x d x$
22. $\int \tan ^{3} x \sec x d x$

Answers:

1.
2.

2. $y=2 x^{2}$
5. $y(1) \approx 1.5$
8. $y(x)=\frac{1}{1+3 e^{3 x}}$
7. $P(t)=\frac{1200}{1+5 e^{-.36 t}}$
10.
a.) $P(t)=\frac{150}{1+24 e^{-.225 t}}$
11. $\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C$
b.) $\begin{aligned} P(17.2 \text { days }) & =100 \\ P(21.3 \text { days }) & =125\end{aligned}$
13. $x \tan x-\ln |\sec x|+C$
14. $\frac{5}{7} \ln |x-1|+\frac{2}{7} \ln |x+6|+C$ $-\frac{1}{2} \ln |x|+\frac{1}{3} \ln |x-1|+\frac{1}{6} \ln |x+2|+C$
16.
20.
$-\frac{1}{4} \cos ^{3} x \sin x-\frac{3}{8} \sin x \cos x+\frac{3}{4} x+C$
21. $-\frac{1}{3} \cos ^{3} x+\frac{2}{5} \cos ^{5} x-\frac{1}{7} \cos ^{7} x+C$
22. $\sec x-\frac{1}{3} \sec ^{3} x+C$

