\qquad
Day 5
Date Period

1. Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of .05 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75
(E) -3.5
2. Which of the following differential equations for a population P could model the logistic growth shown in the figure?
(A) $\frac{d P}{d t}=0.2 P-0.001 P^{2}$
(B) $\frac{d P}{d t}=0.1 P-0.001 P^{2}$
(C) $\frac{d P}{d t}=0.2 P^{2}-0.001 P$
(D) $\frac{d P}{d t}=0.1 P^{2}-0.001 P$

(E) $\frac{d P}{d t}=0.1 P^{2}+0.001 P$
3. Let $y=f(x)$ be the solution to the differential equation $\frac{d y}{d x}=x+y$ with the initial condition $f(1)=$
4. What is the approximation for $f(2)$ if Euler's method is used, starting at $x=1$ with a step size of 0.5 ?
(A) 3
(B) 5
(C) 6
(D) 10
(E) 12
5. The number of moose in a national park is modeled by the function M that satisfies the logistic differential equation $\frac{d M}{d t}=0.6 M\left(1-\frac{M}{200}\right)$, where t is the time in years and $M(0)=50$. What is $\lim _{t \rightarrow \infty} M(t)$?
(A) 50
(B) 200
(C) 500
(D) 1000
(E) 2000
6. The population $P(t)$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(2-\frac{P}{5000}\right)$, where the initial population $P(0)=3,000$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 2,500
(B) 3,000
(C) 4,200
(D) 5,000
(E) 10,000
\qquad
Logistic Equation \& Euler's Method
Day 5
Date
No Calculator Problem
7. Consider the differential equation $\frac{d y}{d x}=2 x-y$.
a.) On the axes provided, sketch a slope
field for the given differential equation
at the twelve points indicated, and sketch
the solution curve that passes through
the point $(0,1)$

b.) The solution curve that passes through the point $(0,1)$ has a local minimum at $x=\ln \left(\frac{3}{2}\right)$.

What is the y-coordinate of this local minimum?
c.) Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's method, starting at $x=0$ with two steps of equal size to approximate $f(-0.4)$. Show the work that leads to your answer.
d.) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than $f(-0.4)$. Explain your reasoning.
\qquad
Logistic Equation \& Euler's Method
Day 5
No Calculator Problem
7. A population is modeled by a function P that satisfies the logistic differential equation

$$
\frac{d P}{d t}=\frac{P}{5}\left(1-\frac{P}{12}\right)
$$

a.) If $P(0)=3$, what is $\lim _{t \rightarrow \infty} P(t)$?

If $P(0)=20$, what is $\lim _{t \rightarrow \infty} P(t)$?
b.) If $P(0)=3$, for what value of P is the population growing fastest?
c.) A differential population is modeled by a function Y that satisfies the separable differential equation

$$
\frac{d Y}{d t}=\frac{Y}{5}\left(1-\frac{t}{12}\right)
$$

Find $Y(t)$ if $Y(0)=3$.
d.) For the function Y found in part (c), what is $\lim _{t \rightarrow \infty} Y(t)$?
\qquad
Logistic Equation \& Euler's Method
Day 5
Date
No Calculator Problem
8. Consider the differential equation $\frac{d y}{d x}=2 y-4 x$
a.) The slope field for the given differential equation is provided. Sketch the solution curve that passes through the point $(0,1)$ and sketch the solution curve that passes through the point ($0,-1$).

C.) Let f be the function that satisfies the given differential ecequation : $2 \mathrm{y}-4 \mathrm{x}$ tion $f(0)=1$. Use Euler's method, starting at $x=0$ with a step size ui u.ı iu uppiuxiriuie ו. ו. 2). Show the work that leads to your answer.
d.) Find the value of b for which $y=2 x+b$ is a solution to the given differential equation. Justify your answer.
e.) Let g be the function that satisfies the given differential equation with the initial condition $g(0)=0$. Does the graph of g have a local extremum at the point $(0,0)$? If so, is the point a local maximum or a local minimum? Justify your answer.

AP Calculus
Logistic Equation \& Euler's Method
No Calculator Problem
9. Let f be the function satisfying $f^{\prime}(x)=-3 x f(x)$, for all real numbers x, with $f(1)=4$ and $\lim _{x \rightarrow \infty} f(x)=0$
a.) Evaluate $\int_{1}^{\infty}-3 x f(x) d x$. Show the work that leads to your answer.
b.) Use Euler's method, starting at $x=1$ with a step size of 0.5 , to approximate $f(2)$.
c.) Write an expression for $y=f(x)$ by solving the differential equation $\frac{d y}{d x}=-3 x y$ with the initial condition $f(1)=4$.

AP Calculus

Name \qquad
Logistic Equation \& Euler's Method
Day 5
Date Period

No Calculator Problem

10. Consider the differential equation given by $\frac{d y}{d x}=x(y-1)^{2}$
a.) On the axis provided, sketch a slope field for the given differential equation at the eleven points indicated.

b.) Use the slope field for the given differential equation to explain why a solution could not have the graph shown below.

c.) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(0)=-1$.
d.) Find the range of the solution found in part (c).

AP Calculus
Logistic Equation \& Euler's Method

Name
Date
\qquad

Answers:

1. D
2. A
3. C
c. $f(-.4) \approx 1.52$
c. $Y=3 e^{\frac{1}{5} t-\frac{1}{120} t^{2}}$
4. B
d.
$\left.\frac{d^{2} y}{d x^{2}}\right|_{(0,1)}>0$
$\therefore f(x)$ is concave up
so Underapproximation
6.a.

7a. 12
b. 6
d. 0
5. E
$8 a$.

b. $f(.2) \approx 1.4$
b. $f(2) \approx 2.5$

10a.

c. $b=1$
c. $y=4 e^{-\frac{3}{2} x^{2}+\frac{3}{2}}$
c. $y=-\frac{2}{x^{2}+1}+1$
d. $g(0)=0$ is a max
b.c. $g^{\prime}(0)=0$ \&
$g^{\prime \prime}(0)<0$
9.a. -4
b. Slope field $\frac{d y}{d x}=0$ at $y=1$ and the graph does not.
d. $[-1,1]$

