\qquad Pd. \qquad

1. The height (in meters) of a projectile shot vertically upward from a point 2 meters above ground level with an initial velocity of $24.5 \mathrm{~m} / \mathrm{s}$ is $h=2+24.5 t-4.9 t^{2}$ after \dagger seconds.
a.) Find the velocity after 2 s and after 4 s .
b.) When does the projectile reach its maximum height?
c.) What is the maximum height?
d.) When does it hit the ground?
e.) With what velocity does it hit the ground?
2. If a ball is thrown vertically upward with a velocity of $80 \mathrm{ft} / \mathrm{s}$, then its height after \dagger seconds is $s=80 t-16 t^{2}$.
a.) What is the maximum height reached by the ball?
b.) What is the velocity of the ball when it is 96 ft . above the ground on its way up? On its way down?
3. If a rock is thrown vertically upward from the surface of Mars with velocity $15 \mathrm{~m} / \mathrm{s}$, it height after \dagger seconds is $h=15 t-1.86 t^{2}$.
a.) What is the velocity of the rock after 2 s ?
b.) What is the velocity of the rock when its height is 25 m on its way up? On its way down?

Answers:

1 a. $v(2)=4.9 \frac{\mathrm{~m}}{\mathrm{~s}}$
b. $\quad t=2.5 \mathrm{sec}$
C. $\quad h(2.5)=32.625 \mathrm{~m}$
d. $\quad t=5.08 \mathrm{sec}$
e. $v(5.08)=-25.284 \frac{\mathrm{~m}}{\mathrm{~s}}$ $v(4)=-14.7 \frac{\mathrm{~m}}{\mathrm{~s}}$
2
a. $s(2.5)=100 \mathrm{ft}$
b. $\quad v(2)=16 \frac{\mathrm{ft}}{\mathrm{s}}$
$v(4)=-16 \frac{\mathrm{ft}}{\mathrm{s}}$
3a. $v(2)=7.56 \frac{\mathrm{~m}}{\mathrm{~s}}$
b. $\begin{aligned} v(2.353) & =6.247 \frac{\mathrm{~m}}{\mathrm{~s}} \\ v(5.711) & =-6.245 \frac{\mathrm{~m}}{\mathrm{~s}}\end{aligned}$
\qquad Pd. \qquad
Motion
Derivatives (2)
4. A particle moves with position function: $s=t^{4}-4 t^{3}-20 t^{2}+20 t \quad t \geq 0$.
a.) At what time does the particle have a velocity of $20 \mathrm{~m} / \mathrm{s}$?
b.) At what time is the acceleration 0 ? What I the significance of this value t?
5. The cost, in dollars, of producing \times yards of a certain fabric is $C(x)=1200+12 x-0.1 x^{2}+0.0005 x^{3}$
a.) Find the marginal cost function.
b.) Find $C^{\prime}(200)$ and explain its meaning. What does it predict?
c.) Compare $C^{\prime}(200)$ with the cost of manufacturing the $201^{\text {st }}$ yard of fabric (AVG ROC between 200 \& 201).
6. The cost function from production of a commodity is $C(x)=339+25 x-0.09 x^{2}+0.0004 x^{3}$
a.) Find and interpret $C^{\prime}(100)$.
b.) Compare $C^{\prime}(100)$ with the cost of producing the $101^{\text {st }}$ item.

Answers:

a. $t=0 \& 5 \mathrm{sec}$
b. $\quad t=3.082 \mathrm{sec}$

5
a. $\quad C^{\prime}(x)=12-.2 x+.0015 x^{2}$
b. $\quad C^{\prime}(200)=32 \frac{\operatorname{Cos} t \text { in } \$}{y d \text { of fabric }}$
C. $\$ 32.20$

Producing the $200^{\text {th }}$ yard of fabric costs you $\$ 32$.
6
a. $\quad C^{\prime}(100)=19 \frac{\operatorname{Cost} \text { in } \$}{\text { unit }}$
b. $\$ 19$

