Name___

Supplement

Day6

1. A projectile is shot upward from the surface of the earth with an initial velocity of 120 $\frac{m}{2}$. What is the velocity after 5 seconds?

sec

- 2. A silver dollar is dropped from the top of a skyscraper that is 1362 feet tall.
- a. Find the position equation.
- b. Find the velocity equation.
- c. Find the time required for the coin to reach the ground.
- d. What is the velocity at impact?
- 3. A slingshot launches a stone vertically with an initial velocity of 300 $\frac{ft}{sec}$ from an initial height of 6 feet.
- a. Find the position equation.
- b. Find the velocity equation.
- c. What is the stone's max height and when does it reach that height?

Answers:

1. $v(5) = 71 \frac{m}{s}$

2.	a.	$s(t) = 1362 - 16t^2$	b.	∨(t) = −32t	c.	t = 9.226 sec	d.	$v(9.226) = -295.242 \frac{ft}{sec}$
3.	a.	$s(t) = 6 + 300t - 16t^2$	b.	v(t) = 300 - 32t	c.	When:t=9.375 What:1412.25ft		

Calculus	Name		
Position – Velocity – Acceleration	Supplement	Day6	
4. A stone is tossed vertically upward with a	n initial velocity of 25	$\frac{ft}{sec}$ from the top of a 30	
foot building.			

- a. Find the position equation.
- b. Find the velocity equation.
- c. What is the height after .25 sec?
- d. Find the velocity of the stone after 1 sec?
- e. When does the stone hit the ground?
- f. What is the velocity of the stone at impact?

5. The position of an object is given by $s(t) = 2t^3 - 9t^2 + 12t$ where t is in seconds ($t \ge 0$) and t is in seconds and s is in meters.

- a. When is the particle at rest?
- b. When is the particle moving forward? backward?
- d. When is the particle speeding up? Slowing down?

Answers:

4 $a = s(t) = 30 + 25t - 16t^{2}$ b v(t) = 25 - 32t c s(.25) = 35.25 ft d $v(1) = -7\frac{ft}{s}$ e t = 2.358 sec f $v(2.358) = -50.456\frac{ft}{s}$ 5 a = t = 1.8.2 sec b forward: $(0,1).8.(2,\infty)$ backwards: (1,2) c Speeding Up: $(1,1.5).8.(2,\infty)$ Slowing Down: (0,1).8.(1.5,2)